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PRE FACE

The work reported of* herein was conducted under Contract NAS 12-23.
The study director for NASA-ERC was F. Noonan, Control and Information

Systems Laboratory, Electronics Research Center, Cambridge, Massachusetts.
It was administered under the direction of R. W. Hallet, Jr., Director of

Research and Development, Douglas Missile and Space Systems Division.
Dr. J. M. Mendel was the principal investigator; J. J. Zapalac was the
associate investigator; Dr. M. J. Abzug and S. Viglione were technical
advisors. In addition, J. Feather contributed substantially to the study effort.

Under the contract, Douglas was to perform the following:

Item 1--Identify areas on the basis of the existing state-of-the-art in

artificial intelligence techniques, where new and novel design
procedures for space vehicle control systems may lead to long life-
times, invariance performance, and reduced dependence on critical
elements.

Item Z--Based on the needs identified under Item 1, undertake with

concurrence of ERC technical monitor, preliminary designs and
studies o£ control systems which may verify feasibility of the concepts.

Item 3--Provide preliminary evaluation of such newly evolved con-
cepts and system designs to determine specific performance
specifications.

The work performed under Item 1 is separated from the work performed
under Items 2 and 3, in this Report. Part 1 of this Report, entitled "Survey
of Learning Control Systems for Space Vehicle Applications, " summarizes
the work performed under Item 1. Part 2, entitled "Fine Attitude Control of
a Spacecraft Operating in a Partially Known Environment, " summarizes the
work performed under Items 2 and 3.

Part 1 of this Report was presented to the 1966 Joint Automatic Control

Conference, University of Washington, Seattle, Washington,
August 17-Z0, 1966.
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ABSTRACT

The results of a 14 month study of the application of artificial intelligence

techniques to a spacecraft control problem are presented. In the first part

of the report, a survey of the present technology of self-organizing control

systems and a discussion of potential space-vehicle applications for such

systems are presented. Two types of self-organizing (learning) control

systems are outlined: (I) on-line-learning control systems and (2) off-line-

learning control systems. An extensive bibliography is included for topics

related to self-organizing systems and for each of the two types of such

systems mentioned above.

The second part of the report presents a preliminary design of a fine

attitude, single-axis controller for an almost cylindrically symmetrical

spacecraft that operates in a partially known environment. The design pro-
ceeds in two stages. First, a nominal controller is designed. All available

information about the plant and the environment are incorporated into this

design. The nominal controller is such that if the system and the on-line
environment are as assumed off-line, the on-line attitude errors are con-

tained to within ±0. Z0 arcsec (as required). The nominal controller is

"nominal" with respect to the overall on-line controller, which is provided
with a capability for updating the nominal controller, when and if updating
is necessary.

The on-line controller designed during the second stage is an on-line

learning controller. This controller utilizes the system's past experience

in attempting to improve the system's present performance. Learning is

accomplished, for the most part, through inclusion of a memory into the
on-line controller.

The complete design embraces the concepts of stochastic-optimal con-

trol theory, combined state and parameter estimation, sensitivity analysis,

control situations, on-line cost functions, on-line learning algorithms

(error-correcting and reinforcing) and pattern recognition.
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Section I

INTRODUCTION

Artificial intelligence techniques have recently been applied to the
design of self-organizing control systems. Two types of such control sys-
tems have been postulated: (1) on-line-learning control systems, in which
the self-organizing controller learns to control a system whose inputs and/or
plant are incompletely specified and/or known; and (2) off-line learning con-
trol systems in which the controller learns to control a system whose actual
control law is incompletely specified. Each of these systems possesses one
or more of the following attributes, making it particularly attractive for
space vehicle applications: (1) ability to maintain satisfactory performance
in the face of random, unpredictable environments; (2) ability to prolong

satisfactory performance in the face of hostile environments that cause pro-
gressive component failure; and (3) ability to provide opitmum control of
complex plants for which present analytical methods are inadequate for
deriving optimum control laws. Before discussing these particular control
systems, a general treatment of self-organizing systems is given in the fol-
lowing paragraphs to permit discussion of learning control systems within a
common frame of reference.



Section Z

SE LF-ORGANIZING SYSTEMS

A self-organizing system is one that changes its basic structure as a
function of its experience and/or environment. Its general aim is to evolve
toward some desired output state or mode of behavior, in spite of some

degree of ignorance of process, inputs, or controls. Since its structure
changes as a function of experience, the self-organizing system can be said
to "learn". This is consistent with most definitions of learning--provided that
such a system improves its future performance by analyzing its past per-
formance. A lucid discussion of "learning" as it is related to control systems
is available in the literature (ref. 1).

A controller that is also a self-organizing system is called a "self-
organizing controller. " Such a controller contains three basic subsystems:
(I) sensors, (2) learning network, and (3) a goal circuit (fig. i).

INPUT
SENSORS

i. ,

(ADAPTED FROM CARNE, REFERENCE 2

J LEARNING

"1 NETWORK

OUTPUT

REINFORCEMENT OR
ERROR CORRECTION

PERFORMANCE

EVALUATOR

GOAL CRITERIA

GOAL CIRCUIT

Figure1 SubsystemsWhichComprisea Self-OrganizingController



The sensors (accelerometers, rate gyros, and horizon scanners)

observe the local environment and provide des,criptive data to the learning

network and the goal circuit. The learning network consists of decision ele-

ments which operate on data input from the sen_rs and which render a

desirable output response. Output data from the_,learning network are supplied

to the system being controlled. The goal circuit directs the system organiza-

tion toward a specific objective and provides information on the degree of

success attained by each trial in terms of the specific objective. This is usu-

ally accomplished by one of the following techniques:

(i) Reinforcement. If present performance is an improvement upon

recent past performance, the goal circuit generates a "reward"

signal to the learning network, indicating that improvement has

occurred. On the other hand, if present performance is worse than

recent past performance, a "punishment" signal is generated, noti-

fying the learning network of that fact. In effect, the reward signal

reinforces those states of the network that contribute to improve-

ment, while the punishment signal reverses the states that produced

improper behavior.

(2) Error Correction. A signal is generated by the goal circuit only if

present performance is worse than recent past performance. This

signal reverses those states that produced improper behavior.

Improved performance is not rewarded.

In the following paragraphs, a system with a self-organizing controller

is referred to as a "self-organizing" or "learning control system."



Section 3
ON-LINE-LEARNING CONTROLSYSTEMS

An "on-line-learning" control system is one in which the inputs and

plant may not be known a priori; the controller is self-organizing and learns

to control the system properly on-line. A representative on-line-learning

control system is shown in fig. 2.

Learning occurs with the self-organizing controller, _ embedded in the

control system during real-time operation of the overall system. Learning

that occurs when the performance history of the overall system--over a

sequence of trials--indicates a trend toward improved performance (ref. 1)

automatically improves the control law through the following functions:

(1) Evaluation of results of control choices made by the self-organizing

controller for a given situation and according to a prescribed
criterion.
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Figure 2. Representative On-Line-Learning Control System
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(2) Modification of the controller's memory store of parameters or its

logic, so that subsequent control choices reflect the evaluation.

Two systems illustrate the on-line-learning philosophy. The first

system, shown in fig. 3, is an adaptive type.

Parameters a and b are variable. Each contains two components,

a = a + K 1 and b = _ + K2; c_ and _ represent random variations of a and b,

respectively; and K 1 and K 2 represent the controls to offset the random vari-

ations in a and b, respectively. The random variations in a and b are

assumed to change sufficiently often so that purely adaptive action could not

optimize the system during the periods of constant a and _. Thus, a learning

capability {fig. 4) was included (ref. 1).

The system shown in fig. 4 is subjected to a fixed-amplitude square-

wave input, r(t), to facilitate the optimization of the performance index, PI,

with respect to K 1 and K 2. Constants a and _ are constrained to remain

constant over two periods of the square-wave input; and at each occurrence

of an (_, _) pair, four computations of the PI are carried out, one at each

transition of the square wave. The PI is optimized on the computer. Speci-

fically, after each computation of the PI, K 1, and K 2 are adjusted by a two-

dimensional hill-climbing technique. The best current values of K 1 and K 2

for a given pair (a i, _i), the directions of K 1 and K 2 adjustment, and the

best current value of PI are stored in the computer memory.

R(s) +_
1

S

X2(s) z I C(s)

Figure 3. Second-Order System with Two Variable Parameters, Without a Learning Capability
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Figure 4. Second-0rderSystemwithTwo VariableParameterswith a Learning Capability

The first time the system "sees" the pair (Gi, _i) it reacts as a conven-
tional adaptive-control system. When the pair (_i,_i) reoccurs, however,
the best values of K 1 and K Z are set from memory, and the best directions
to increment K 1 and K 2 are known. Adaption then proceeds, and better

values of KI' K2' direction, and PI replace the old values for (_i, _i) in the
memory. Inthis way, the system's past experience is incorporated into the

machinery responsible for future control choices (K 1 and K2). The random
state variable (RSV) learning strategy discussed by Barton (refs. 3 and 4)

utilizes a random search technique for obtaining K 1 and K z. The system
begins by making a random experimental change in K 1 and K z. If system
performance is improved as a consequence of this experiment (as determined
in the goal circuit), the new values for K 1 and K z are retained; otherwise,
the initial changes are discarded, and a new random experiment centered
about the original values of K 1 and K 2 is tried. Learning proceeds in this
fashion to those values of K 1 and K 2 that provide the best performance.

This first on-line-learning control system has a greater capability than
a conventional adaptive system because it recognizes similarly recurring
control situations (combinations of G and _) and uses and improves the best
previously obtained values of K 1 and K z for each control situation.

A second on-line-learning control system is shown in fig. 5.
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Figure 5. Bang-Bang System Studied by Waltz

In this system, the controller learns to drive the state vector x from any
set of initial conditions to within a distance 6 of the origin in the state space
in a way that approaches the optimum as defined by the system PI. (This was
chosen to be

PI

n

2= r x 1 (rT)

r=I

where n is the sampling instant when x arrives to within _ of the origin. )
Learning occurs through a set stimulus-response relationship between ele-

ments of the state space and the control-choice space, which, in this case,

contains only the elements, +l and -1. The approach is first to design a
controller that partitions the state space into sets called control situations,
and then to learn the best control choice for each situation.

To be specific, the state space is partitioned into circular sets. (For
higher-order systems, the state space is partitioned intohyperspherical
sets.) This space, according to Waltz, is "partitioned (into control situations)
by constructing circular sets of prespecified, fixed radius D. A given mea-
surement vector (state vector) is considered a member of the set which it is
closest to, providing the distance between the set vector (center of the set)
and the measurement vector is less than D. If this distance is greater than
D, a new set is established, and its set vector is equal to the measurement



vector. Initially there are no sets and sets are only established in the vicin-

ity of observed measurement vectors. Thus, memory is not wasted in

establishing sets in regions where measurements never occur (ref. 1)."

Each circular set (control situation) has either a +1 or a -1 control

choice. All state vectors within the same circular region are assun_ed to

have the same control choice. Initially, the probability of either a +i or a -l

control choice is assumed to be the same. In this case, learning is by rein-

forcement of the probability that either +l or -I will be chosen for a given

control situation. This reinforcement is partially based on the optimization

of a quadratic subgoal Pl every T seconds. (The control choice is fixed over

each sampling interval. ) In effect, the optimization leads to either a positive

or a negative reinforcement of the probability that the control choice for a

control situation is +I or -i. Finally, as learning proceeds, the probability
approaches unity for one of the control choices in each control situation.

In this case, the PI does not enter directly into the design of the control-

ler (which contrasts with the preceding system); although, as stated by

Gibson and Fu (ref. 1), it does enter into the choice of a proper subgoal

PI. (Usually, the PI has an integral form over a number of sampling

periods. On the other hand, the subgoal PI is defined over each sampling

period. ) Nevertheless, the PIin this case, as well as in the preceding adap-

tive system, may be used as an indicator of learning on a learning curve.

A learning curve is a plot of performance as a function of time, or the

number of practice trials used to measure learning. A typical learning

curve for an arbitrary PI is shown in fig. 6.

i

TIME (t)

Figure 6. A Representative Learning Curve
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Improved performance in this case is demonstrated by a reduction in

the PI as a function of increasing values of time. One difficulty in the design

of either of the preceding systems is the choice of meaningful PI's and sub-

goaIPI's. This is pointed out by Gibson and Fu (ref. l) who note that the PI's

chosen should have a unique minimum that will be sought out by the system.

In terms of learning curves, this means that after sufficient time or practice

trials, the PI should remain constant. An interesting choice for an index of

performance is made by Connelly (ref. 6) and Barron (ref. 4), who demon-

strate the feasibility of using stability criteria in the goal circuit.

The objective of Connelly's study was to design a "bang-bang" controller

that would maintain stable operation for the plant K/s(s + a) in the face of

plant changes, controller changes, and controller deterioration. A Lyapunov

function, V(x), is defined and evaluated in the goal circuit. The goal circuit

then rewards those control choices for which V(x__) < 0 and punishes those for

which V(x) > 0. The system is similar in many respects to the system

studied bv Waltz (fig. 5), except that the learning network consists of statis-

tical swit'ches which learn under the influence of the goal circuit to provide

the proper control choice. Barron claims better control when using V(x)

instead of V(x). This means that his goal circuit generates a reward signal

if _r(x) < 0 and a punish signal if V(x) > O.

The ability of a system to improve its performance to a recurrent situa-

tion typifies the behavior of an on-line-learning system. For example, if

the system in fig. 5 is subjected to the disturbance x_A(ti), then xB(ti), and

then xA(t i) again, it does not behave as if it had never encountered xA(ti).

In short, its adaptation to xB(ti) does not destroy its previous adap_on to

xA(ti).

Theoretically, the on-line-learning controller can be trained during the

real-time operation of the overall control system in which it is embedded.

In practice, however, this training is performed before the entire system is

operable. In this way, overall system performance is brought up to an

acceptable level during what might be called on-line training. Starting at

this level, the on-line-learning controller continues to adjust to improve per-

formance during the real-time system operation.

For on-line learning to improve a system's performance while on-line,

new information must be made available to the on-line-performance assessor.

This means that information not available a priori must be utilized by the

performance assessor in making the decisions as to how or if the controls
should be modified. If no new information becomes available on-line, the

controller could have been designed ahead of time; and there would be no

need for an on-line-learning capability.

Space vehicle applications for the on-line-learning concept seem abun-

dant. On-line-learning control appears most suited to unmanned applications,

such as attitude control of orbiting vehicles, solar probes, and atmospheric-

entry vehicles. Unmanned geophysical research and weather satellites are

required to maintain attitude control with respect to Earth for long durations.

10



For greater pointing accuracies than afforded by gravity-gradient techniques,
a long-life, active system is needed. This could be a system with current-
carrying coils that are powered by solar energy and that interact with Earth's
magnetic field. On-line learning could minimize energy use and attitude
perturbations during seasonal changes in radiation and atmospheric external

torque s.

On-line learning could also be used to provide fine attitude control such

as would be required by a laser communication satellite in Mars or Earth

orbit. In these applications, the overall goal would be to keep a number of

state variables (attitude errors) within a region centered at the origin of the

state space when the satellite is subject to random disturbances (for example,

solar and atmospheric perturbation torques) and/or component deterioration,

including progressive failures. A second application in which the on-line-

learning concept would cope with progressive failures is a solar probe to
distances of less than one-half an astronomical unit (AU). This application

suggests the use of fluid control rather than electronic components and is
contingent upon advances in the survivability of other subsystems as well,
particularly communications. Another potential application would be the
atmospheric-entry attitude-control system for an unmanned planetary probe.
This control system may deteriorate on the long journey to another planet.
On-line learning could commence during the actual entry and achieve the best
possible performance with the degraded system.

Finally, an application of on-line learning for the distant future would

be the logical organization of automata to implement exploration and experi-
mentation on other planets. On-line learning could minimize energy use in

the performance of assigned tasks.

11



Section 4
OFF-LINE-LEARNING CONTROLSYSTEMS

An "off-line-learning" control system is one in which the inputs and
plant are known a priori; the actual controller is incompletely specified
(partially known) and is replaced by a self-organizing system which learns
(is trained) to control the system properly off-line.

A representative off-line-learning control system is shown in fig. 7.

Learning occurs with the switch S in position(D; the self-organizing

system,_ is shown representative problems and their solutions. For each
sample, certain internal modifications to the learning network increase its
proficiency. Training requires no external intervention and is systematically
convergent toward a learned state. At this point, internal modification of the
learning network stops, and it now behaves in a conventional deterministic
fashion; i.e., its responses to problems are not based upon any statistical
phenomena or past history but are dependent upon its present static internal

r
I

i
i

÷1
I
I

LEARNING
NETWORK

T
GOAL CIRCUIT

ACTUAL
CONTROLLER

(INCOMPLETELY
SPECIFIED)

_e/--SELF-ORGANIZING CONTROLLER,

I

I ®
0 x_"= f(x_u_t,)

OUTPUT
k •
• v

Figure 7. Representative Off-Line-Learning Control System
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state. Its performance, therefore, will be exactly repeatable. Further-

more, if well trained, the learning network will be able to generalize prob-
lems not encountered in training and obtain solutions corresponding to the

most similar problem encountered in training. The generalization ability of

the learning network allows the incompletely specified actual controller to be

bypassed during the real-time control of the plant. With the switch $ in
position (_, however, the system shown fig. 7 behaves like a conventional'
nonadaptive control system: learning does not occur.

In the control-system applications of off-line learning discussed in the

literature (refs. 7 through 10), the self-organizing system is of the type
shown in fig. 8; for clarity, e is assumed to be a two-dimensional state vec-
tor and u is assumed to be a scalar.

This type of system--without the input encoder--has been described

variously as a learning machine, "an adaptive pattern recognizer or classifier,

an adaptive majority-vote taker, an adaptive linear neuron, and an adaptive
linear-threshold element (ADALINE). In the sequel, the complete system is

referred to as an adaptive computer. The only other adaptive computers

reported utilize an Artron (ref. ll) and a Neurotron (ref. 12).

The e I and e 2 inputs to the adaptive computer in fig. 8 are each divided
into m quanta. The V's are binary signals having the value of+l or -1; V o
is a fixed threshold input set at + 1. The set of 2m inputs V 1 ...... V2m is
often referred to as an input pattern (ref. 9).

ell= ee2 --

ENCODER
(QUANTIZER)

'_,1 l

j_el i

..,._.Vm+ 1

*Y0 = +1

-w,r....

• _'Wm I

Wm_+! I )

!

2m

uL = SGN F., WiVi
i=O

L m -- -4" _-._--ERROR CORRECTING/
SIGNAL

ADAPTOR
(COMPARATOR) u

V2m

4

Figure 8. Adaptive Computer,_
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The weights, Wi, are learning parameters. The learning feature of_
is provided by the adaptor which adjusts weight values through an iterative
training procedure (learning algorithm) to minimize the error between the

output, u L, of the adaptive computer and some desired output, u.

During the training process, the adaptive computer changes its weights
only upon the basis of the input pattern present and the desired output pattern.
Weights are adjusted by error-correcting techniques known to lead to conver-
gent methods of adaptation for adaptive computers (ref. 13); reinforcement

techniques may lead to divergent methods of adaption. Weights are changed

only when an input pattern gives an output, u L, opposite the desired output,
u; they are all changed by equal increments.

During training, storage of input patterns or calculations involving more
than one input pattern at a time is not necessary. Instead, the input pat-
terns are presented to the adaptive computer sequentially, several times,
until all those in the training set are being correctly classified, or until the
number of classification errors have reached some steady-state value. Dur-
ing the training procedure, the input patterns may be presented in any order
(ref. 9).

Often, a PI, such as the sum of the squares of the errors between the
desired and actual outputs of the adaptive computer, is plotted versus the
total number of input patterns adapted to by the computer. Such a curve
indicates the learning progress of the adaptive computer during training;
however, it is meaningful only when switch S (fig. 7) is in position (_). As
previously noted, learning does not occur when switch S is in position (_).

An overall PI and a subgoal PI for the adaptive computer are distin-
guishable (see the second Purdue system discussed previously). The subgoal
of the adaptive computer is correct classification of each input pattern. This
subgoal directs the updating of the weights, W i. The overall PI is that the
adaptive computer correctly classify all such input patterns. The overall
goal determines how often the sequence of input training patterns has to be
applied to the adaptive computer before complete learning occurs.

The most attractive feature of the adaptive computer is its ability to
generalize input patterns not encountered in training and to obtain solutions
corresponding to the most similar input patterns encountered in training.
Generalization relates to the concepts of linear separability (ref. 10) and
projectability (ref. 7). Moreover, the adaptive computer remains very

reliable despite component failures (the weights, Wi) and is particularly well
suited to resolve problems for which no analytical solutions can be found.

In fig. 8, u L is limited to two values, +l; thus, the desired output, u,
must also be limited to :el; otherwise the adaptive computer could not learn
to simulate the actual controller. The adaptive computer is especially
useful, therefore, in those situations where the actual controller is the bang-

bang type; hence, almost all applications of the adaptive computer in off-line-
learning control systems have been limited to the time-optimal control of

linear systems where the actual controller is bang-bang. These studies

15



involved (with modifications resulting from individual treatment by each

author) the following (see fig. 9):

(1) Quantization of the state space in region of interest and identi-

fication of the resulting hypercubes with linearly independent
codes.

(2) Selection of a subset I from the complete set of initial

conditions (x(O))

(3) Computation of the open-loop optimal-control, u*(t), and tra-

jectory, x*(t), for each element of I and for a specific plant.

(4) Identification of the controls for the hypercubes through which

the trajectories pass; let these hypercubes and their controls

constitute the training set S.

(5) Training an off-line learning controller by means of the set S
in 4.

These five steps constitute a nonparametric training procedure, which

is fairly well established in the discipline of pattern recognition (ref. 13).

CONTROLLER

u

u.I,uL ADAPTIVE COMPUTER
I

S

PLANT
0

X
• k--

Figure 9. Adaptive Computer for Time-Optimal Control of a Linear Plant
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A significant difference in the studies reported in the literature (ref. 8

through i0, and 14) is the selection of the subset I from the complete set of

initial conditions{x(0)} sufficient for complete learning. Van Nortwick

(ref. I0) and Zapalac (ref. 14) train the adaptive computer on a set of input

patterns from every square in the quantized state space. F. W. Smith

(ref. 9) trains the adaptive computer on a set of input patterns from every

hypercube in the quantized state space that borders the optimal switching

surface. In this case, the optimal switching surface is known a priori.

Both of these approaches are practical only for low-order plants. However,

F. B. Smith (ref. 8) considers high-order systems for which the exact form

of the optimal switching sur#ace, as a function of the state variables, is not

known. In these systems, the adaptive computer is trained on a set of input

patterns uniformly distributed in the quantized state space. For example, in

the control of a fourth-order rigid vehicle, an arbitrary region of the four-

space is defined and quantized into 524,288 four-dimensional cubes. The

adaptive computer is trained on a set of 400 initial conditions chosen at uni-

form intervals in the arbitrary region. This represents only 0. 076% of the

total input patterns. According to F. B. Smith, "If the sample set I is suffi-

ciently representative, then the controller obtained will provide control with

desirable characteristics for a much wider class of inputs than the sample

set" (ref. 8). More recently, Smith has extended his study to include the

time-optimal control of systems with variable plants.

At present, the off-line-learning concept, which represents a control

system application of pattern recognition, serves as a useful design toolby

achieving practical realizations for closed-loop (sub-) optimal control laws

for systems where analytical solutions are not feasible. In addition, off-

line-learning controllers are extremely reliable in the sense that failures of

one or more weights in the adaptive computer do not markedly deteriorate

system performance. The fullpotential of off-line-learning control systems

has not been realized, however. At present, the only self-organizing system

apparently utilized in these systems is an adaptive computer with a single,

linear-threshold element. This necessarily restricts the application of this

type of computer to the class of bang-bang controllers. Although this includes

the important application of time-optimal control, it eliminates problems

that frequently occur in space-vehicle applications, such as minimum-fuel

control, minimum-energy control, and any controller requiring multilevel

outputs. Finally, all time-optimal switching surfaces are not necessarily

realizable with single linear-threshold elements. The surface usually must

be projectable to permit this realization (ref. 7 and 14). By including more

threshold devices in the adaptive computer, it should be possible to make

them applicable to control problems other than time-optimal problems. For

example, it has been shown that two linear-threshold elements can realize

the three states, -1, 0, and +1. It is likely, therefore, that an adaptive

computer containing two threshold devices would be useful in the minimum-

fuel problem for realizing the closed-loop optimalcontrol law, where, as is

well known, the optimal control law (for linear systems) is of the on-off-on

(relay with dead-zone) variety (ref. 15). An interesting space-vehicle applica-

tion is one in which the off-line-learning controller is trained to act as a

backup mode for man during a specific mission, such as re-entry. In this

application, man supplies the required training samples through on-ground

simulations. This can be considered analogous to optimization theory which

17



supplies the open-loop optimal controls (training samples) when the off-line-

learning controller is used, for example, to realize closed-loop time-optimal
control.
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Section 5

CONCLUDING REMARKS

To combine the advantages of on-line and off-line systems, one could
provide the off-line-learning control system with an on-line learning capa-
bility. A block diagram of such a system is shown in fig. 10 (R.eference 16).

With switches S_ in position (_) and S z in position (_) , the system reduces
to the off-line-learmng control system shown in fi_ K 7. On the other hand,
with switches S 1 in position (_ and S z in position _ , the system reduces to
the on-line-learning control system shown in fig. Z.

While the combined system is conditioned on all available a priori infor-
mation about the plant and environment, as in an off-line learning controller,
its main advantage is that it would be able to reorganize if the system experi-
enced a partially known or unknown environment, or if components deterior-
ated, as in an on-line-learning controller. Such a combined system is
described in Part Z of this report, in connection with the fine attitude control
of a laser communication satellite in Mars orbit. Nominal controls are

designed with a priori information about variations in plant parameters and
disturbance torques. On line, the nominal controls may be updated to com-
pensate for incorrect or incomplete information about actual disturbance
torques.

To demonstrate another possible advantage of an off-line system with an
on-line learning capability over off-line- and on-line-learning control sys-
tems, a hypothetical PI is assumed which is meaningful for both off-line and
on-line learning. (A major problem is to find a PI meaningful for both on-line
and off-line learning.) Fig. 11 presents a comparison of the three control
situations: (1) training plus on-line learning; (Z) training and no on-line
learning; and (3) on-line:learning with no prior training.

Learning occurs in (Z) only during the training period, as is evident from
the constancy of the training and no on-line learning curve during on-line
operation. Note that, until time T, the performance of (Z) is better than the
performance of (3). For t >'r, however, (3) swiftly overtakes the perform-
ance of (Z) and eventually reaches the minimum PI, whereas the performance
of (Z) remains unchanged. Also, (1) reaches the minimum PI sooner than (3)
because when on-line learning begins, (1) starts out with a lower PI than (3).

19



$2 --,.-0 (_)

®

INPUT +'=_

-I

o

LEARNING

NETWORK

OFF-LINE
GOAL CIRCUIT

4-
ON-LINE

GOAL CIRCUIT

• ACTUAL L_
CONTROLLER PLANT OR PROCESS

• (INCOMPLETELY _= f (x,u,t)SPECIFIED) --

OUTPUT

I"
Figure 10. Off-Line-Learning Control Systemwith On-Line-Learning Capabilities

Q
Z

Z

e,,

,?

G.

1
• I I_ TRAINING PLUS

I / ON-LINE LEARNING

I -"- TRAINING AND NO

_ / ON-LINE LEARNING

. I'/ 1- -- NO TRAINING

I \

I I \ . .

I I"
TRAINING _-[-_ON-LINE LEARNING -_'='"

TIME (NO. OF PRACTICE TRIALS)

Figure 11. Learning Curves (Hypothetical)

2O



• REFERENCES, PART I

le

me

,

4.

.

.

.

.

.

I0.

Fu, K. S.; Gibson, J. E.: et ah Philosophy and State of the Art of

Learning Control Systems. Rep TR-EE63-7 (AF Report AFOSR 5144).

Control and Information Systems Lab., School of Electrical Engineering,
Purdue University, Nov. 1963.

Came, E. B.: Self-Organizing Models - Theory and Techniques.
Paper Presented at National Aerospace Electronics Conference,
Dayton, Ohio, 196Z.

Barron, R. L.; Davies, 3. M.; Schalkowsky, S.; and Snyder, R. F.:
Self-Organizing Adaptive Systems for Space Vehicle Attitude Control.
Presented at the SAE-18 Committee Meeting, Miami Beach, Florida,
Dec. 1964.

Barron, R. L.; Davies, J. M.; Schalkowsky, S.;and Snyder, R. F.:

Self-Organlzing Adaptive Systems for Space Vehicle Attitude Control.
Presented at the AIAA/ION Guidance and Control Conference,

Minneapolis, Minnesota, Aug. 1965.

(NOTE: Content of this paper is different from that of Reference 3. )

Fu, K. S.; and Waltz, M. D.: A Computer-Simulated Learning Control
System. 1964 IEEE International Convention Record, Part 1, pp. 190-201.

Connelly, E. M.; Mirabelli, R. E.; and Worthen, J.H.: Feasibility
Studies on Use of Artrons as Logic Elements in Flight Control Systems.
FDL-TDR-64-Z3, Wright-PattersonAFB, Ohio, Feb. 1964.

Berkovec, J. W.; and Epley, D. L.: On Time-Optimal COntrol with
Threshold Logic Units. Preprint 4.1, WESCON, Aug. 1964.

Smith, F. B. , Jr. : A Logical Net Mechanization for Time-Optimal
Regulation. NASA TN D-1678, 1962.

Smith, F. W.: Contactor Control by Adaptive Pattern-Recognition
Techniques. Rep. No. 6762-1, Stanford Electronics Laboratories,
Stanford University, April 1964.

Van Nortwick, K. G.: An Adaptive Computer Applied to a Second-
Order Non-Linear Control System. Boeing Report No. DZ-9019Z-7,
May 1963.

21



11.

12.

13.

14.

15.

16.

Fuhr, W. H.: A Study of the Feasibility of Using Artificial Neurons to
Develop More Reliable Flight Control Systems. ASD-TDR-63-143,

Wright-Patterson AFB, Ohio, April 1963.

Lee, R. J.; and Snyder, R. L.: Functional Capability of Neuromime
Networks for Use in Attitude Stabilization Systems. Report No. ASD-

TDR-63-549, Wright-PattersonAFB, Ohio, Sept. 1963.

Nilsson, N. J.: Learning Machines: Foundations of Trainable Pattern-
Classifying Systems. McGraw-Hill Book Co., Inc., 1965.

Zapalac, J. J.: Self-Organizing Control Systems, Vol. 1. On Adaptive
Computers. Douglas Report SM-47857, July 1965.

Mendel, 3. M.; and Zapalac, J. J.: Self-Organizing Control Systems,
Vol. 3. Off-Line Training of Time-Optimal, Fuel-Optimal, and
Minimum-Energy Controllers. Douglas Report SM-51975, Feb. 1966.

Mendel, J. M.: On Applications of Biological Principles to the Design
of Feedback Control Systems. Douglas Report SM-47772, Nov. 1964.

22



BIB LIOGRAPHY

The following is not intended to be a fully annotated bibliography. For
clarity and ease of reference, the works are divided into three sections:

On-Line-Learning Control Systems; Off-Line-Learning Control Systems;

and Topics Related to Self-Organizing Systems (in some cases, a single
work may be mentioned in more than one section).

On-Line-Learning Control Systems

Barron, R. L.; Davies, J. M.; Schalkowsky, S.; and Snyder, R. F.: Self-

Organizing Adaptive Systems for Space Vehicle Attitude Control. Paper

presented at the SAE-18 Committee Meeting, Miami Beach, Florida,
Dec. 1964.

Probability-state-variable and random-state-variable methods are

outlined; background material for on-line-learning systems is also

presented.

Barron, R. L.; Davies, J. M.; Schalkowsky, S.; and Snyder, R. F.: Self-

Organizing Adaptive Systems for Space Vehicle Attitude Control. Paper

presented at the AIAA/ION Guidance and Control Conference, Minneapolis,
Minnesota, Aug. 1965.

Probability-state-variable method is discussed and experimental results
are presented.

Barron, R. L.; Davies, J. M.; Schalkowsky, S.; and Snyder, R. F.: Self-

Organizing Spacecraft Attitude Control. Report No. AFFDL-TR-65-141,

Wright-PattersonAFB, Ohio, Aug. 1965.

Probability-state-variable method is applied to the attitude control and

stabilization of a low-order model for a spacecraft; goal circuits based

upon Lyapunov functions are investigated.

Connelly, E. M.; Mirabelli, R. E.; and Worthen, J. H.: Feasibility Studies

on Use of Artrons as Logic Elements in Flight Control Systems. Report
No. FDL-TDR-64-23, Wright-Patterson AFB, Ohio, Feb. 1964.

Use of Artrons as learning controllers is discussed, and control systems

in which goal circuits are based upon Lyapunov functions are investigated.

Fu, K. S.; Gibson, J. E.; et ah Philosophy and State of the Art of Learning

Control Systems. Report No. TR-EE63-7 (AF Report AFOSR 5144), Control

and Information Systems Laboratory, School of Electrical Engineering,
Purdue University, Nov. 1963.

Contains much pertinent material, including some background on

learning.

23



Fu, K. S.: Learning Control Systems. Computer and Information Sciences

(J. T. Tou and R. H. Wilcox, editors), Spartan Books, Inc.

Washington, D.C., 1964, Chapter 13, pp. 318-343.

Pattern recognition and learning theory are applied to control-system

designs.

Fu, K. S.; and Waltz, M. D.: A Computer-Simulated Learning Control

System. IEEE International Convention Record, 1964, Part l, pp. 190-201.

Pattern recognition (control situations) is applied to control-system

designs.

Fu, K. S.; and Waltz, M. D.: A Learning Control System.

Joint Automatic Control Conference, June 1964.

Is quite similar to preceding reference.

Preprint I- l,

Fu, K. S.; Hill, J. D.; and McMurtry, G. J.: A Computer-Simulated On-

Line Experiment in Learning Control Systems. AFIPS Conference Pro-

ceedings, Spring Joint Computer Conference, Vol. 25, 1964, pp. 315-325.

Adaptive control system with memory is investigated.

Fu, K. S.; and Hill, J. D.: A Learning Control System Using Stochastic

Approximation for Hill-Climbing. Preprint XIV-2, Joint Automatic Control
Conference, June 1965.

Stochastic approximations and learning rates are discussed.

Fu, K. S.; and McMurtry, G. J.: A Study of Stochastic Automata as Models

of Adaptive and Learning Controllers. Report No. TR-EE65-8, School of

Electrical Engineering, Purdue University, June 1964.

Models of automata operating in a random environment are applied in a

controller of an adaptive learning control system.

Fu, K. S. ; and Waltz, M. D.: A Heuristic Approach to Reinforcement

Learning Control Systen_s. IEEE Transactions on Automatic Control,

Vol. i0, No. 4, Oct. 1965, pp. 390-398.

Pattern recognition (control situations) is applied to control-system

de signs.

Fuhr, W. H. : A Study of the Feasibility of Using Artificial Neurons to

Develop More Reliable Flight Control Systems. Report No. ASD-TDR-

63-143, Wright-Patterson AFB, Ohio, April 1963.

Self-organization is discussed in relation to improved reliability.

Gibson, J. E.: Adaptive Learning Systems. (Available from ASTIA as

AD 292 796), Jan. 1963.

Difference between learning and adaptive control systems is discussed.

Hill, J. D.: An On-Line Learning Control System Using Modified Search

Techniques. Ph.D. Thesis, Purdue University, Jan. 1965.

Adaptive control system with memory is investigated; stochastic

approximations and learning rates are discussed; and pattern recognition

is applied to an index of performance.

24



Hsu, J. C.; and Meserve, W. E.: Decision-Making in Adaptive Control
Systems. IRE Transactions on Automatic Control, Vol. 7, No. i,
Jan. 1962, pp. 24-32.

Decision theory used to link the problems of identification and control
when only inexact measurements are available.

Krug, G. K.; and Netushil, A. V.: Automatic Systems with Learning
Elements. Paper presented at Second IFAC Meeting, Basle, Switzerland,
1963.

On-line-learning systems that use approximating polynomials are
discussed.

Lee, R. J.; and Snyder, R. F.: Functional Capability of Neuromime Networks
for Use in Attitude Stabilization Systems. Report No. ASD-TDR-63-549,
Wright-Patterson AFB, Ohio, Sept. 1963.

Neurotrons as learning controllers are discussed and learning based
upon repeated application of the environment is investigated.

Mendel, J. M.: On Applications of Biological Principles to the Design of
Feedback Control Systems. Douglas Report No. SM-47772, Nov. 1964.

Off-line-and on-line-learning control systems are surveyed.

Mosteller, H. W.: Learning Control Systems. Electronics Laboratory,
General Electric, 1963.

Off-line- and on-line-learning control systems, reinforcement control,
and learning model studies are surveyed.

Raible, R. H.: A Learning Control System Based on Adaptive Principles.
Ph. D. Thesis, Purdue University, Aug. 1964.

Learning control is considered in a stepwise and continuously changing
environment--the study is entirely experimental.

Taylor, W. K.: A Pattern Recognizing Adaptive Controller. Paper
presented at Second IFAC Meeting, Basle, Switzerland, 1963.

Pattern recognition is applied to control system design (similar to
the Purdue studies).

Tou, J. T.: System Optimization Via Learning and Adaptation. Interna-
tional Journal of Control, Vol. II, No. I, July 1965, pp. 21-32.

Approach for designing adaptive and learning systems for achieving
optimal control is discussed; decision theory and dynamic pro-
gramming are used.

Waltz, M. D.: A Study of Learning Control Systems Using a Reinforcement
Technique. Ph.D. Thesis, Purdue University, Aug. 1964.

Pattern recognition (control situations) is applied to control-system-
designs; also discussed are reinforcement learning operators used
for adjusting the probabilities of particular control choices for given
control situations.

25



Off-Line-Learning Control Systems

Berkovec, J. W_; and Epley, D. L.: On Time-Optimal Control with

Threshold Logic Units. Preprint 4. i, WESCON, Aug. 1964.

Concept of projectability is discussed and related to the number of

linear threshold elements required for a realization of a switching
surface.

Charters, R. L.: Applications of Learning Machines to Control Systems.
Paper presented at National Aerospace Conference, Dayton, Ohio, 1964.

Boeing's efforts in the field of off-line-learning control are
reviewed.

Mendel, J.M.: On Applications of Biological Principles to the Design of
Feedback Control Systems. Douglas Report No. SM-47772, Nov. 1964.

Off-line- and on-line-learning control systems are surveyed.

Mendel, J. M.: Self-Organizing Control Systems, Vol. Z, Open-Loop
Time-Optimal Control of a Stable Maneuverable Re-Entry Vehicle.
Douglas Report No. SM-47904, June 1965.

Off-line learning for closed-loop time-optimal control is discussed.

Mendel, J. M.; and Zapalac, J. J.: Self-Organizing Control Systems,
Vol. 3, Off-Line Training of Time-Optimal, Fuel-Optimal and Minimum-

Energy Controllers. Douglas Report SM-51975, Feb. 1966.
Adaptive computers trained to provide approximations of time-and fuel-
optimal switching surfaces are discussed; experimental and analytical
results are presented.

Mosteller, H. W.: Learning Control Systems. Electronics Laboratory,
General Electric, 1963.

Off-line- and on-line-learning control systems, reinforcement control,
and learning model studies are surveyed.

Smith, F. B., Jr.: A Logical Net Mechanization for Time-Optimal
Regulation. NASA TN D-1678, 1962.

Closed-loop, time-optimal control of third-and fourth-order plants
are investigated with off-line training.

Smith, F. B., Jr.; Lee, J. F.L.; Butz, A. R.;and Prom, G. J.: Trainable
Flight Control System Investigation. FDL-TDR-64-89, Wright-Patterson
AFB, Ohio, Aug. 1964.

Closed-loop, time-optimal adaptive control with off-line
training is discussed.

Smith, F. W.: Contactor Control by Adaptive Pattern-Recognition Tech-

niques. Report No. 6762-1, Stanford Electronics Laboratories,
Stanford University, April 1964.

Applications of ADALINES to control systems are investigated.

26



Smith, F. W.; and Widrow, B.: Pattern-Recognizing Control Systems.
Computer and Information Sciences (J. T. Tou and R. H. Wilcox, editors),

Spartan Books, Inc., Washington, D.C., 1964, Chapter lZ, pp. 288-317.
ADALINES, MADALINES, and concept of generalization summarized;
applications including closed-loop, time-optimal control, are discussed.

Van Nortwick, K. G.: An Adaptive Computer Applied to a Second-Order
Non-Linear Control System. Boeing Report No. D2-90192-7, May 1963.

Closed-loop, time-optimal control of a second-order plant with
off-line training is investigated.

Zapalac, J. J.: Adaptive Processes in Decision Making. Douglas
Report No. SM-45921, April 1964.

Discussions on pattern recognition, analysis of linear threshold
elements, learning algorithms, and learning machines are presented.

Zapalac, J. J.: Self-Organizing Control Systems--Volume I, On Adaptive
Computers, Douglas Report SM-47857, July 1965.

Theory of linear threshold devices is summarized, and application
of single-element adaptive computer to a time-optimal switching
curve is detailed.

TopicsRelated to Self-Organizing Systems

Aizerman, M. A.: Automatic Control Learning Systems (in the Light
of Experiments on Teaching the Systems to Pattern Recognition). Paper
presented at Second IFAC Meeting, Basle, Switzerland, 1963.

Discusses problem of teaching automatic systems using pattern
recognition.

Andrews, A. M.: Learning in Control Systems. Control,

pp. 99-103.
Self-optimization and learning are discussed.

Vol. Z, Sept. 1960,

Andrews, A. M.: Self-Optimizing Control Mechanisms and Some Principles
for More Advanced Learning Machines. Paper presented at First IFAC
Meeting, Moscow, Russia, 1960.

Discusses learning and related subgoals for control systems.

Andrews, A. M.: Pre-Requisites of Self-Organization. Computer and
Information Sciences (J. T. Tou and R. H. Wilcox, editors), Spartan
Books, Inc., Washington, D.C., 1964, Chapter 16, pp. 381-391.

Discusses self-organization (this work is, in part, quite similar to
the two immediately preceding).

Butsch L. M.; and Ostgaard, M. A.: Adaptive and Self-Organizing Flight
Control Systems. Aerospace Engineering, Sept. 1963, pp. 80-116.

Self-organizing systems are proposed as natural extensions of
adaptive control systems.

27



Came, E. B." Self-Organizing Models--Theory and Techniques.

presented at National Aerospace Electronics Conference, Dayton,

Ohio, 196Z.

Gives a useful definition of self-organizing systems.

Paper

Chichinadze, V. K.: Logical Design Problems of Self-Optimizing and

Learning-Optimizing Control Systems Based on Random Searching. Paper

presented at First IFAC Meeting, Moscow, Russia, 1960.

Self-optimization, random searching, and learning are discussed.

Elsey, J. C.; Tong, H. S. ; and Meyers, N. H.: Re-entry Guidance by

Threshold Network Storage of Precomputed Optimum Commands. Paper

(66-52) presented at AIAA Third Aerospace Sciences Meeting, New York,

New York, 1966.

Trainable threshold networks are applied to the realization of

optimum guidance surfaces.

Fu, K. S.; and McLaren, R. W.: Synthesis of Learning Systems Operating

in an Unknown Random Environment. Paper presented at the International

Conference on Microwave, Circuit Theory, and Information Theory,

Tokyo, Japan, 1964.
Probabilistic automata and stochastic approximations are applied to

the design of a learning system's learning section.

Fu, K. S.; and McLaren, R. W.: An Application of Stochastic Automata

to the Synthesis of Learning Systems. Report No. TR-EE65-17, School

of Electrical Engineering, Purdue University, Sept. 1965.

Stochastic automaton learning models are investigated in great detail;

linear and nonlinear, continuous and discrete models are also

considered.

Gerhardt, L. A.; Goerner, J. G.; and Powell, F. D.: The Application of

Error Correcting Learning Machines to Linear Dynamic Systems. Paper

presented at the National Electronics Conference, Chicago, Illinois, 1965.

Learning machines are used to model or invert an unknown system.

Gibson, J. E.: Adaptive and Learning Control Systems. System Engineering

Handbook (R. E. Machol, W. P. Tanner, Jr., and S. N. Alexander,

editors), McGraw-Hill Book Co., Chapter 30, 1965.

Adaptive and learning systems are compared; learning concepts, such

as pattern recognition, the simple reinforcement learning model and

the concept of a learning curve are discussed.

Ho, Y. C.: Adaptive Design of Feedback Controllers for Stochastic Systems.
IEEE Transactions on Automatic Control, Vol. 10, No. 3,

July 1965, pp. 367-368.

Discusses pattern classification for design of a controller in a

stochastic system.

28



Ivakhnenko, A. G.: Engineering Cybernetics - USSR (English translation
of the R_ussian-language monograph, Technicheskoya kibernetika Sistemy
automaticheskago upravleniya s prisposoblenigen kharakteristik). Office
of Technical Services, 1961.

Learning systems and self-organizing systems are discussed.

Ivakhnenko, A. G.: Self-Organizing Systems with Positive Feedback Loops.
IEEE Transactions on Automatic Control, Vol. AC-8, No. 3,
July 1963, pp. 247-254.

Discusses a self-organizing system.

Ivanenko, V. I.; and Tou, J. T.: On the Design of Learning Systems for
Control. Computer and Information Sciences (J. T. Tou and R. H. Wilcox,

editors}, Spartan Books, Inc., Washington, D.C., 1964, Chapter 22,
pp. 519-536.

Presents the theoretical background for learning control systems.

Kaplan, K. R.; and Sklansky, J. : Analysis of Markov Chain Models of
Adaptive Processes. Report No. AMRL-TR-65-3, Wright-PattersonAFB,
Ohio, Jan. 1965.

Techniques for the analysis of synchronous and asynchronous Markov
chains are developed; emphasis is placed upon problems encountered
in the use of these chains as models of adaptive processes.

Lendaris, G. G.: On the Definition of Self-Organizing Systems.
Proceedings IEEE, Vol. 52, No. 3, March 1964, pp. 324-325.

Presents theoretical definition of a self-organizing system.

McLaren, R. W.: A Markov Model for Learning Systems Operating in
an Unknown Environment. Paper presented at National Electronics
Conference, Chicago, Illinois, 1964.

Outlines stochastic automata theory and applies it to the design
of the learning section of a learning system.

Mesarovic, M. D.: Self-Organizing Control System. IEEE Transactions
on Application and Industry, Vol. 83, No. 74, Sept. 1964, pp. 265-269.

Self-organizing systems are discussed from general and abstract
points of view.

Miller, R. W.: Process Identification by Pattern Recognition Techniques.
Ph.D. Thesis, Rensselaer Polytechnic Institute, Jan. 1964.

Pattern-recognition concepts are applied to process identification.

Minsky, M.: Steps Toward Artificial Intelligence, Proceedings of IRE,
Vol. 49, No. 1, Jan. 1961, pp. 8-30.

Discusses learning systems (list 95 references}.

Narendra, K. S.; and Streeter, D. N.: A Self-Organizing Control System
Based on Correlation Techniques and Selective Reinforcement. Technical

Report No. 359, Cruft Laboratory, Harvard University, July 1962.
Self-organizing control system based upon the principles of selective
reinforcement investigated.

29



Nilsson, N. J.: Learning Machines: Foundations of Trainable Pattern-

Classifying Systems. McGraw-Hill Book Co., Inc., 1965.
Discusses introductory pattern recognition concepts.

Shen, D. W. C.: Artificial Intelligence in a Hierarchy of Nonlinear Systems.
Report No. 63-18, Moore School of Electrical Engineering, University of
Pennsylvania, March 1963.

Learning systems are defined.

Sklansky, J.: Adaptation and Feedback. Paper presented at Joint Automatic
Control Conference, New York, New York, June 1962.

Learning is discussed.

Sklansky, d.: Adaptation, Learning, Self-Repair, and Feedback.
IEEE Spectrum, Vol. l, No. 5, May 1964, pp. 17Z-174.

Discusses learning as it is related to self-repair, stability,
reliability.

and

Sklansky, J.: Learning Systems for Automatic Control (abridged version).
IEEEInternational Convention Record, Part 6, 1965, pp. 117-122.

Discusses relation of decision theory, trainable threshold logic,
stochastic approximations, and Markov chain theory to learning
control systems.

Sklansky, J.: Learning Systems for Automatic Control. IEEE Transactions
on Automatic Control, Vol. 11, No. 1, Jan. 1966, pp. 6-19.

Discusses recent developments in learning systems for automatic
control from the point of view of pattern recognition; decision theory,
trainable threshold logic, stochastic approximation, and Markov chain
theory are elaborated upon; includes an extensive bibliography.

30



PART 2

FINE ATTITUDE CONTROL OF A SPACE CRAFT

OPERATING IN A PARTIALLY KNOWN ENVIRONMENT



Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Appendix A

CONTENTS

NOMENCLATURE

INTRODUCTION

NOMINAL CONTROLS AND NOMINAL

CONTROL SITUATIONS

Introduction

Summary of Design
Simulation Studie s

Summary and Conclusions

STATE AND PARAMETER ESTIMATION
FOR CONTROL

Introduction
Combined Estimation
Nominal Controller Simulation Studies

Summary and Conclusions

AN ON-LINE LEARNING PROCEDURE

Introduction
On-Line Cost Functions
Error-Correction Learning Procedure
Simulation Studies

Summary

CONCLUSIONS

REFERENCES

SYSTEM DYNAMICS

Equations of Motion
Ranges for Certain Parameters in
the Satellite Equation of Motion
Scaling of Equation (A6)
State Space Formulation
References

Page

V

31

37

37
38

5i
74

77

77
77

93
104

113

113
114
116

134
141

145

149

151

151

157
161
162

165

iii



Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

ESTIMATION OF STATES AND

PARAMETERS (FEATURE

EXTRACTION)

A Priori Estimation and Error Equations
A Posteriori Estimation and Error

Equations
References

DESIGN OF NOMINAL (SUB-OPTIMAL)

CONTROLS FOR FIXED PARAMETERS

Optimal Control for Noise-Free Regulator

Computation of Weighting Factor
References

REALIZATION OF NOMINAL CONTROLS

THROUGH OFF - LINE- TRAINING

Adaptive Computer A

Adaptive Computer B
References

STOCHASTIC AUTOMATA LEARNING

ALGORITHM

Stochastic Automata Approach

Description of On-Line Learning Algorithm
Discussions

References

ADAPTIVE, RANDOM-OPTIMIZATION

LEARNING ALGORITHM

Introduction

Simple Random Optimization

Adaptive, Random-Optimization

A Learning Algorithm
References

166

169

174

176

177

192

193

195

196

2o5

206

2O8

211

216

219

220

220
220

222

223

227

iv



A(t}

Aa(t)

a(t)

a

b

b

b
--a

C(t)

C

c j

C d

E d

C o

C 1

C 2, •.., C 5

C

d

d

d(k)

d B

f(T)

fl (a,a, _),

fz (a, a, _ )

f
"_t

NOMENCLATURE

plant matrix, abbreviated A

augmented plant matrix, abbreviated A
a

plant parameter

specific value of a(t)

control distribution vector

component of b

augmented control distribution vector

covariance matrix

normalization constant

polar moment of inertia for jth inertia wheel

discrete disturbance-noise covariance matrix

design value for C d

rejection coefficient

detection coefficient; design constant

de sign constants

dummy variable; speed of light

disturbance distribution vector

component of d

mean value vector

differential as seen by an observer fixed to main-body axes

weighting function

sensitivity coefficients

augmented disturbance distribution vector



gj (PA)
a

H(s)

K

K*(n)

K ';'_(n)

k
rrl

L

L.(t)
1

_(t)

_.(t)
1

M

M(a), M(__)

m. (k)
1

n(t)

P(t)

P(n In)

PA (t)
a

a

A,

P--A (t It)
a

p_ k
a

_PA(t)

m_
--A

PA (k;t)

.th
j discriminant

transfer function

moment of inertia (with appropriate subscripts);

identity matrix

universal gravitational constant; design constant

sub-optimal gain matrix

optimal gain matrix
th

maximum number of iterations for m entry in a

control situation

augmented control distribution vector

torque on ith body axis

external perturbation disturbance torque

external perturbation disturbance torque acting on ith

body axis

observation matrix; bound

augmented observation matrix

control situation bounds

conditional expected value

white measurement noise vector

gain matrix (in Riccati equation) for optimal control

covariance matrix

augmented plant parameter vector

augmented plant parameter vector associated with center
of lth control situation

pseudo-estimate of ---PA (t)
a

one of m. augmented plant parameter vectors
1

(k = 1, ..., mi) whose control is m_

feedback parameter vector

nominal feedback parameter vector associated with _th

contr ol situation

k th iterate of on-line-optimal feedback parameter vector

associated with _th control situation

vi



I:'A*_(k)

P.(k)
1

Pij (t)

p,

Pl(k, I ; m)

PI (k,l; m)

Q

Q(n)

Q*(n)

q

q(t)

R(t)

R d

_d

rll, r22

rdll' rdZ 2

Sp

S
XlX 1

Svv

s

T.

T
s

T(c)

T(k)

t

,t

amplitude ofPA (k;t)forkT < t < (k + I)T

probability of being in ith state during kth interval of time

components of P(t)

on-line or off-line probability that It(t)] < 10 -4 Ib - ft

on-line sub-goal performance index

overall goal or performance index

.i
last measured value of Pl for which k. = _.

1 1

weighting matrix

plant matrix in augmented a priori estimation equation

plant matrix in augmented a prior error equation

component of Q

expanded state vector

positive definite matrix

discrete measurement-noise covariance matrix

design value for R d

weighting factor; number of control choices; function of
panda

components of R

components of R d

space of parameter vectors (with appropriate subscripts
and superscripts)

power spectrum of xl(t )

power spectrum of v(t)

complex variable; radius of hypersphere

decision time

iteration time in discrete estimation procedure

auxiliary function used to indicate whether or not on-line
optimizations for the cth control situation have been
concluded

transformation matrix

real time (only used in Appendix A)

vii



t !

u*(t)

u 1 (t), u 1 (t)

Uz(t), uz (t)

$

ugF

,

uzp

u3(t)

u_l(t)

uj(t)

V

v(t)

V d

W(t)

W 1

w__(t)

W..

31

_x(t)

X_a(t)

x I , x z

XlFP

y(t)

y(k)

Z(k,_; m)

z(t)

scaled time denoted t for notational simplicity

on-line optimal control defined in Figure 3, Part 2

control and optimal

in Figure 1, Part 2

control and optimal

in Figure Z, Part 2

u Z with loop closed around filter

u Z with loop closed around plant

optimal control for noise-free regulator problem

unit step function

.th
control acceleration acting on J inertia wheel

stochastic cost function; positive multiplier in

disturbance noise covariance, in the stationary case

positive function in disturbance noise covariance

control defined on and for the system

control defined on and for the system

component of C d

positive definite matrix

weighting matrix

vector white noise process

weights for linear threshold element

state vector, abbreviated x

augmented state vector, abbreviated x
--a

components of x_(t}

component of x l(t) due to (uZF - Uzp)

observation vector

de cision function

normalized cost function

measurement vector

viii



__(k)

_i(k)

F(t)

V

i(t),Vz(t)

¥i

__(n+ 1, n)

6(t -_)

6B

6.
--X

E

_'(k)

_i (t)

qi(t)

® (t)

8

A (t)

A (t)

kI, k2, k3

,i kZl ,IkI , k3

disturbance torque parameter

specific value of _(t)

pseudo-gradient vector

components ofj3(k)

parameter matrix

weighting factor in linear reinforcement average

components of I'(t)

limiting value for E { Pi(k)}

discrete control distribution vector

impulse function

prespecified function of allowable attitude error

perturbation of an independent variable as seen by an
observer fixed to main-body axes

uniformly distributed feedback-parameter perturbation
vector

allowable attitude error

threshold function

constant in _"(k)

damping ratio

perturbation rotation of ith body axis from reference axes

orientation of ith reference axis with respect to orbit-plane
axe S

vector white noise process

learning parameter

feedback gain matrix

th
on-line-optimal feedback gain matrix for ! control
situation

components of A

components of A*'_

most recent value of k. that is different from k. (k)
1 1

ix



M

_'dl 1' _d22

_(t)

(t)

z (k)

P

o-

o-(t)

1

(n+l,n), 1
_*(n+ l,n)

_ "(t 1)

__ d(n + i, n)

con

positive definite matrix

random vector

components of C d

scalar white noise process

disturbance state

k th change in .__P_l{k; t)

most recent value of __ that is different from __ (k)

weighting factor

distance of origin of main-body axes from origin of inertial

axe s

covariance matrix for optimal estimator

standard deviations

transition matrices

augmented vector white noise process

discrete vector random process

circular orbital frequency

angular velocity of jth inertia wheel with respect to main-

body axes

natural frequency

(5 t t)

(k)

• (1)(k)

estimate of •

error in estimate of •

value of • associated with nominal control for a control

situation

k th realization of the random variable •

realization of the random process • (k)

transpose of ( )



( )-I

I( )I
II( )II

f_ )dt
0

E{( )}
E{I}
max ( )

s_( )

6( )
_.a
8g

Pr{}

{ }jJl

( I )T

inve r s e of ( )

absolute value of ( )

Euclidean norm of ( )

definite integral of ( )

expected value of ( )

conditional expected value

maximum of ( )

signum function

summation

infinity

variation

partial derivative

probability

set of J elements, indexedj = 1s ..., J

partitioned vector

partioned matrix

xi



Section 1

INTRODUCTION

The purpose of this report is to describe the results of a study in which
artiflcal intelligence techniques are applied during the preliminary design of
a spacecraft attitude control system. Answers to questions about the feasi-
bility of designing an attitude control system using the present state of tech-

nology in artificial intelligence techniques are sought in the context of a
specific spacecraft application. New artificial intelligence techniques are
not developed, since it is not within the scope of the present study to do so.

The artificial intelligence techniques considered are: (1) on-line
learning, which embraces the concepts of: (a) control situations, (b) on-line
cost functions, and (c) on-line learning algorithms; and (2) off-line learning,
which embraces pattern recognition. The unique feature of the present study
is that all of these techniques are used simultaneously.

The specific spacecraft application considered is the fine attitude control
of an almost cylindrically symmetrical satellite in Earth or Mars orbit, such
as a laser communication satellite in Mars orbit. By fine attitude control is
meant that mode of control in which attitude errors are brought from within
-_M arcsec (about 80 arcsec) to within ±¢arcsec (e.g., ±0.20 arcsec for a

laser communication satellite). It must be noted that 1 arcsec is equivalent
to 4.85 x 10 =v radians. The distinctions between coarse and fine attitude

control and fine-pointing control are found in Appendix A (at this point it is
recommended that Appendix A be read in its entirety). The property of
cylindrical symmetry initially permits the study of the control of a second-
order system. This system is linear, time-varying and, in addition, is
excited by a disturbance torque i(t) which, because of a lack of or an incom-

plete knowledge about it, is assumed to be a poorly defined stochastic

process.

The system is controlled by a controller (inertia wheel) with an output

signal that is proportional to the states of the system (fig. I). The overall

goal of the controller is to keep attitude errors (Xl) very small, less than

_-0.20arcsec. Since j_(t)is a stochastic process, x(t) is a stochastic process;

hence, one way to properly control the system might be to choose u1(t} such
that
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t (t) H

CONTROLLER

L
_I-
(a)

x (t)

_x'(t) = A(t) x(t)+ b u1(t)+ d_(t)

_(t) = (Xl, x2)T

ul(t ) ANDS(t) ARE SCALARS

A(t) =/_ 0 1/a(t) 0

b = (0 b)T

d = (0 d)T

(b)

Figure 1. Second-Order System Disturbed by Perturbation Torques,_(t). (a) Block Diagram,

(b) Mathematical Relationships
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is minimized. If _(t) and a (t) were known ahead of time precise descriptions
of them could be in_corporated into this optimization problem; the resulting
optimal control, ui"(t), would then not only be optimal with respect to the
model of the second-order system but would also be optimal with respect to
the actual system, since the two would be one and the same.

Since l(t) is not known ahead of time an approximation of it is used in the
optimization procedure. Specifically, l(t) is approximated by a first-order

Markov process (see fig. 2). In this case, the resulting optimal control
u_ (t) [to be distinguished from u_ (t)], while optimal with respect to the model

in fig. 2, is not necessarily optimal with respect to t_e actual system in
fig. 1 in which it will ultimately be used. In short, u 2 (t) is sub-optimal with
respect to the actual system; hence, even though u_ (t) may cause the system
in fig. 2 to respond satisfactorily it may not sufficiently reduce the attitude
errors in the actual system. A poor response may occur in this case as a
result of discrepancies between l(t) and its first-order model, discrepancies
which, due to a lack of a priori knowledge about l(t), cannot be adjusted until
the system is in actual Operation (in orbit around Mars, for example). These
adjustments are accomplished through on-line learning.

Basic premise: For on-line learning to improve a system's performance
during the actual operation of the system new information must be made avail-
able to an on-line performance assessor; that is to say, information which
was not available a priori (off-line) must be utilized by an on-line performance
assessor in making the decisions how or if the sub-optimal controls should be
modified.

An on-line-learning controller is depicted in fig. 3 for the actual system
shown in fig. 1. The on-line-learning controller represents an extension of
the controller depicted in fig. 2; an on-line goal circuit (performance
assessor) is now available for making decisions as to whether or not the on-
line-optimal control, u*(t), should be updated. The design of the on-line-

optimal control proceeds in two steps:

(1) The sub-optimal controls u_(t) (fig. 2) are designed for different
combinations of the augmented plant parameters, a(t) and a(t). These
controls use all of the available information about the system and its
actual environment. In the sequel, these controls are referred to as
nominal controls.

(2) The nominal controls are updated on-line if updating is necessary.
This updating is accomplished through on-line learning.

Initially u*(t) = u* (t). The new information which serves as the basis for
the decisions made Z on-line by the on-line goal circuit (fig. 3) comes from

measurements of the actual attitude errors. These measurements provide
information about the partially known environment. After the measurements
are made they are processed in the form of an on-line cost function which is

then used in an on-line-learning algorithm for updating the control.

It was mentioned above that the on-line-learning controller represents an
extension of the controller depicted in fig. 2. Unfortunately, the model in
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Second-Order System Where Actual Disturbance Torque is Modeled by a First-Order
Markov Process. (a) Block Diagram, (b) Mathematical Relationships
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fig. 2 is an oversimplification of the real situation. In reality, it is not

possible to observe _(t); hence, _(t) must first be estimated and then the
estimated value of _(t) is fed back as part of u*(t) [fig. 3; or u2(t ) in fig. 2]

In addition, it may not be possible to measure xl(t) and x2(t ) exactly (if,

indeed, both states are measurable); that is to say, the measurements may

be corrupted with noise. This seems likely in the laser communication

satellite application, since xl(t) and x2(t ) are quite small, xl(t ) and x2(t )

may, therefore, also have to be estimated, in which case the estimated
values are fed back as part of u*(t) (the assumption that it is possible to sep-

arate the estimation and control problems is discussed in later sections of

this report).

.
Hence, in order to mechanize the control u (t) estimates of xl(t), x2(t) and

_(t) must be obtained from noisy measurements. In addition, estimates of

the parameters a(t) and a(t), which characterize the plant and disturbance

torque, respectively, are obtained. They are obtained for two reasons:
(1) to provide the initial choice for u*(t), since u 2 (t) is precomputed

for different combinations of a(t) and c_(t), and (2) to implement a control

situation concept which is used during on-line-learning.

For the mechanization of the on-line-learning system in fig. 3, the

following sub-problems are considered in the sequel in greater detail:

(1) Evaluation of nominal controls

(2) Estimation of states and parameters

(3) Development of an on-line-learning procedure

The above s_b-problems are discussed in Sections 2, B, and 4 of this part,

respectively. Experiments which test the proposed on-line-learning pro-

cedure are described also in Section 4 of this part. Conclusions and sugges-

tions for further work appear in Section 5 of this part.
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Section 2

NOMINAL CONTROLS AND NOMINAL CONTROL SITUATIONS

Introduction

Controls, in the design of which all the available information about the
system and the environment is incorporated are referred to as nominal
controls. The nominal controls for the system in fig. 3 are obtained by
formulating and solving an optimal control problem for the system in fig. Z
in which all of the available information about the system and the associated
environment has been included. These controls are proportional to the
augmented state vector x (t), as required.

-a

The details of the design of the nominal controls, for specific values of
the plant parameters, appear in Appendix C. It is recommended that
Appendix C be read in its entirety at this point. For completeness in the
present exposition, the results of the design and the major assumptions made
during the design are presented in the next subsection. There the nominal

controls are obtained by freezing the plant parameters a(t) and _(t) [specific
values of a(t) and _(t) are denoted a and _, respectively], after assuming
that ranges for both parameters are known a priori. Since it is not very
feasible to evaluate the nominal controls for every combination of a and a,
a practical realization of the nominal controls must be found. The usual

approach is to partition the augmented plant parameter space (the a-_ space)
into squares (hypercubes in a higher dimensional augmented plant parameter
space) and to associate a single control with each square. Such as association,
or mapping, is depicted in fig. 4. The partitions, loosely speaking, relate to
the concept of control situations. This is elaborated upon in the subsection
entitled "Partitioning of Augmented Parameter Space. " A simulation of the
system in fig. 2 is discussed in the subsection titled "Simulation Studies. "
The purpose of the simulation was to observe the effects of the numerous
assumptions made during the design and realization of the nominal control
on the attitude error (which must be kept within ±0.20 arcsec).

The controller designed in this section is an adaptive controller "in that
feedback gains are changed if plant parameters change. In addition, the
feedback gains for the time-varying system are time-varying, even though
the nominal gains are not. This is a result of the adaptivity of the nominal
controller.
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Figure 4. (a) Partitioq of Augmented Plant Parameter Space and (b) Nominal Feedback Parameter

Vectors lp_, Each Associated With an ith Partition in (a), i = 1, ..., 16.

Summary of Design

In Appendix C, nominal controls are designed for the system in fig. 2,

when a(t) and _(t) are held constant, by optimizing a cost function which is

quadratic in the attitude error and control. The optimal control problem is

a stochastic optimal control problem, since the attitude error, xl(t ), is a

stochastic process. Rather than solve the stochastic problem directly, the

solution is obtained in two steps:

(1) x a (t) is estimated by filtering theory (discussed in Section 3 and
_ppendix B)

l*](2) The optimal control for the noise-free regulator problem u 3(t)
is obtained.

up(t), in fig. 2, is then obtained from items 1 and Z according to the

S_paration Theorem (ref. C1). Three assumptions are made in this solution

for u;(t):

(1) Nominal controls for the time-varying system can be found by

employing a design procedure in which the time-varying parameters

are frozen initially at specific values

t_A= (kl hZ _3 )T; see eq. (C8).
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(2) The SeparationTheorem may be applied when states and parameters

are estimated using a nonlinear estimator.

(3) Ranges on a(t) and cw(t) are known a priori.

As shown in Appendix C,

Uz(t) =A _a (tlt) (i)

whe r e

A= _P_ = (×i ×Z×3 ) (Z)

×1 = -(a- aq_++_) (3)

×z =_z Iv_aZ+p-a) (4)

,:
_z+ (,/_ + p) _,_/2 (vG_ + r,) - a

and P is a weighting factor that is directly proportional to control effort and

inversely proportional to attitude error. This weighting factor is designed

for a worst-case design in which the disturbance noise v(t) is replaced by

± 3V_ _ (see fig. 2) and attitude errors are constrained to remain less than

or equal to ec (±0.2 arcsec) in the face of this step-type disturbance.

The following inequality results for P :

4 r 3 Z 2 2 Z 2_ 4) r + 4
r + Z C z + (2C 1 + C2) r + 2C 1 (C z C I <0 (6)

whe re

2
p = r - a (7)

and

C _

1 c

3000 _-
(8)

= Z
C z a (Za + a z) - ZC I (9)

The solutions for 9 in eq. (6) are obtained as described in Appendix C.

As these solutions are for specific values of a and a, and since this section is

primarily interested in a single value of 9 for regions in the augmented plant

parameter space, due to the time-varying nature of a and or, these solutions
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shall not be elaborated here. Instead, the section shall indicate how eq. (6)
can be used to obtain a single value of P, and subsequently a single feedback
parameter vector, for regions in the a- a space, as in fig. 4.

Control Situations for Nominal Controls

Here the nominal controls are obtained for specific control situations.

A control situation is defined as a region in the augmented plant
parameter space for which a single control (feedback parameter vector)
leads to satisfactory performance for all points contained therein.

One might assume that a control situation can be constructed quite
arbitrarily about the point at which the nominal control (for all points within
the control situation) is calculated. In fig. 5, for example, the nominal
control is computed at (a, a) = (a,a) and either a square or circle is
constructed, each centered at (a,a). It is incorrect to assume that these
figures are control situations, in the sense of the definition above, since
there is no guarantee that all points within these figures will have a satisfac-
tory performance associated with them. In general, an admissible region
for variations in a and a about (a, _) must first be determined and then a
control situation within the admissible region must be constructed. The
concept of an admissible region relates the phrase satisfactory performance,
in the definition of a control situation, to the boundary of a control situation.

| a D a

Figure 5. Arbitrary Partitions in Augmented Plant-Parameter-Space
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An admissible region is defined as th___eeregion in the augmented plant

parameter space (subject to constraints on a ands) for which the system

performs satisfactorily under the action of a single feedback parameter

vector (control). A control situation, in general, is a sub-set of an

admissible region. It follows, therefore, that before control situations can

be constructed the admissible regions must be determined.

Admissible Regions. --The concept of an admissible region relates to
satisfactory system performance. Here, the following is assumed:

Satisfactory performance is achieved if, when v(t) is replaced by ±3q_-,

as in the section titled the "Worst-Case Design for Weighting Factor P," in

Appendix C,

IXl (¢0) I _ ' = 0.20arcsec (I0)

As pointed out in the preceding section, eq. (10) is equivalent to the inequality

in eq. (6). For the purposes of the present analysis, it is convenient to let

C 3

C I = --&- (Ii)

and

C 4

Cz = --a ' (IZ)

whe re

C3 = K (a + a 2) (13)

K
_ -3ooov'V (14)

and

C4 = 3 (2a + a 2) - 2 C 3. (15)

In the derivations of eqs. (l l) to (14), it was assumed that o<0 and that

(a + _Z)>0. The results obtained below are easily generalized to include the

case when (a + _Z)<0. Upon substitution of eqs. (11) and (1Z) into eq. (6),

the latter equation becomes

4 4 3 3 Z 2 + 2 r z Z 4 <0 (16)r + 2C4a r + (ZC 3 C4) + Z_C 3 (C 4 -2a 5) r + C 3-

This inequality is the starting point in the determination of admissible regions.
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Let (a, a) be the values of a and a at which the nominal control for a

control situation is computed. Associated with this nominal control is a

value of P, designated P , which is found from eq. (16), with a = a and a =a;

that is to say, P is a solution of the inequality

4 4 3 3 a2 23 2 2 2 4g r + 2C4 a r + ~ (2C + C4) r + 2_aC_ 3 (C_ 4 - 2a 5) r + C3 <0 (17)

J

where C3 and C4 are evaluated by replacing a and o with a and a in eqs.

and (15), respectively.

(13)

Within each control situation-",'

a = a+ 5a M 1 (a) _< 5a <_M 2 (a) (18)

and

a = a + 6a - M 3 (a) _< 6a < M 4 (a) (19)

It must be observed, that the bounds on 6a and 6a are, in general, dependent

upon the specific values of a ands; however, as there is no apparent procedure

for choosing these different bounds, it is assumed that

M 1 (a) : M z (a) : M 3(_) : M 4(o) = M (Z0)

An additional assumption is that M is small; hence, 6a and 6o are small

variations in a and a. Eq. (20) represents the constraints on a and a referred

to in the definition above of an admissible region.

Now, for all points within an admissible region (and, hence, a control

situation) eq. (16) must be satisfied. For these points, if one neglects

second- and higher-order effects (6a and 6aare small), r, C 3 and C 4 become:

r = r + Za6a (Zl)

c 3 : c3 + K (6a + 2£_)_ c3 + 6c 3 (zz)

C 4 = C4 + 2-a36c__ + (5a4+_ 6aa 2) 6a- Z SC 3 (Z3)

Upon substitution of eqs. (Z1) to (23) and powers of these equations, in
which second- and higher-order effects are neglected, into eq. (16), one

obtains the following inequality for 5a and 5a:

_ < 0 (2-4)fl (_' a, 9) 6a + fz (a, a, p) 5a + C 5 -

$Tobe more precise, the notation a _ ands _, which denotes the l th control

situation, should be used; however, for notational simplicity, this will be
assumed, but not used.
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who re

fl (a, _,P) (8a_ 4 + 4g 6 - 4K 3) r 3 + (lZa 3 C4 + 4SZ C3 K +

8_ 6 C 3 2K) r + (4a_ C_ C 44_C 3 C 4K - K - 4_C 3 ~

8a 6 Z C33K)q3 +4 _ (Z5)

and

fz (a, _,J_) = 4_3_ -r4 + (6_2_ C4_ + I0_7_ + IZa~5~ _ 8_4K) _r3 +

(8_ 3 C3K + 10C4 a6 + IZa_4C4 + 4_C3Z+ 2sC4 z

8J C4K) _rz + (10o5Cz + lZa._JCz-_ Z0__5_3Z+'ZC4_C3z +

8J C 3 _4 K - 4? C3 Z- 16g 7 _3 K - 8_ z C3ZK) r + 8a (_33K

(Z6)

4 4 3 3 Z 32 C Z) r z_5 = a r + ZG4 _ r + (Z_ + -4 - +

z_ c3Z(c_4 - z_s) x + C3 4 (z7)

Equation (Z4) together with the facts that ]6al<-Mand]Scx[ s Mdefine
the admissible regions in the augmented plant parameter space. * The four
possible regions are summarized in Table I. From these results one
observes the following:

(1) The point (a, g), at which the nomi.nal control (for a control situa-
tion) is computed, is usually not at the center of the admissible
region. In fact, if P is computed from the equality in eq. (17),

_5 = 0 and the point (_, _) is on the boundary of the admissible
region.

(z) Once the admissible region is determined a square or circular
control situation can be constructed within it. Illustrations of such

constructions appear in fig. 6. It must be observed that (a,_) does
not even have to be contained within the control situation.

*Observe that _5 -< 0. This fact is made use of in Table I.
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Figure 6. Constructionof SquareandCircularControlSituations (C.S.)
Withinthe AdmissibleRegions(A.R.)

Control Situations. --Next, the conditions under which it is possible to
center a square or a circular control situation at (_, _) are investigated. It
is assumed here that p is evaluated from the inequality in eq. (17). The
results below apply fo_ each of the cases depicted in Table I; they are illus-
trated in figs. 7 and 8 only for the third case.

Circular Control Situation Centered at (a, ¢_): Using relatively straight-
forward geometric arguments_ it is possible to show that for the condition in
eq. (Z8) or (30), eq. (Z9) or (31), respectively, defines circular control
situations that are centered at (a, _). Two cases are depicted in fig. 7.

+(f2 2 ,,(A) If _ < M \fl/ = CIRCLE (Z8)
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_k / C 5 )2 .

(6a)2 + (6a)2 _ (29)

flZ + f22

(B) /i 2
>- M + \fl / (30)

(6a) 2 + (6a) 2 __ M 2 (31)

Square Control Situation Centered at (a,_): Again, using simple geomet-
ric arguments, it is possible to show that fforthe condition in eqs. (32) or
(34), eqs. (33) or (35), respectively, defines square control situations that
are centered at (a,a). Two cases are depicted in fig. 8.

(A)
C-5

If
< M

i +

f2

) =_ SQUARE
(32)

Ic-sl
(33)

(B) >- M + (34)

la,_l, la,_l _ M (35)

I I)Discussion: It must be observed that, since M + <M + ,

it is always possible to construct the maximum circular control situation (of
radius M) before it is possible to construct the maximum square control
situation (of length 2M). The maximum square control situation equals the
admissible region, whereas the maximum circular situation excludes the
corners of the admissible region; hence, there is a tradeoffbetween circular
and square control situations.

Partitioning of Augmented Plant Parameter Space. --Here the above
theory is applied to partition the augmented plant parameter space into square
control situations which are centered at (a, a ) and which have a single value
of passociated with each of them. The specific ranges for a(t) anda(t) are:

-0.40 - a <- 0.40 (36a)

-1.0 _ a _-0. 10 (36b)
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Figure 7. Construction of Circular Control Situations Centered at (a a), for Cases (A)
and (B)in Eqs. (28)and(30), Respectively

(a)

8a

M

.R._

M 8o

C5

_a

-M

-M

(b)

Figure 8. Construction of Square Control Situations Centered at (a,a), for Cases (A) and (B)
in Eqs. (32) and (34), Respectively
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As discussed above, once a and a are fixed, a range of values for p must

be determined from eqs. (17) or (6). Eq. (6) was simulated on the IB1V_7094

for over 200 combinations of a and _. It was observed in every case that eq. (6)

has two real roots which are very close to one another; that C 1 always lies
between these real roots; and, that

left-hand side of eq. (17) <0.

In the procedure described below for partitioning the augmented plant

parameter space (a - a space), it is initially assumed, therefore, that

p = C I. In addition, it seems highly desirable to partition the a - a space

['nto squares that are all of the same size; hence, eq. (34) must be satisfied

for all values of a and _ (sufficient to partition the a - _ space). The following

procedure was used for partitioning the a - _ space:

lo

2.

3.

Choose a and _ and set M -- 0. i0 (for all combinations of a and _ )

Evaluate fl (a, _, C l), fz (a,_, C l), I_-_I and SQUARE [eq. (32)]

Perform the test in eq. (34).

If eq.(34) is true for M=0. i0, P = _I and for all values of a and_

(sufficient to partition the a - aspace), the design is complete.;:-" If, on the

other hand, eq. (34)does not hold for some combinations of a and _ , any one

of the following design refinements may be tried:

I. Set M to a smaller value, keeping P = CI

Z. Choose a different value for P, keeping M = 0. i0

3. Choose different values for P and M

4. Choose a different set of plant parameters at which to center the

control situations.

Design results for the case when M = 0. I0 and _P = C1 are summarized

in fig. 9. Note that both CIRCLE [in eq. (Z8)] and SQUARE are plotted on the

figures, in order to demonstrate that in all cases circular control situations

impose a less severe constraint than square control situations. Observe,

also, thatfor large negative values of a _5 I goes belowSQUARE, which

means that in those cases eq. (34) does not hold; hence, a square control
situation of dimension 0.20 x 0. Z0 cannot be constructed for certain combi-

nations of a ands. As a becomes more positive the design becomes more

successful. The design was modified by setting M equal to 0.05 and, in

•-Larger values of M could be tried.
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those few remaining cases where eq. (34) still did not hold [e. g. , a = -0.40
and a = -0.60] , by rechoosing P. The final partition of the a - a space is
depicted in fig. 10. There the control situations are labelled 1 through 90.

The weighting factor associated with each nominal control situation is

tabulated in Table II. In addition, the components of the nominal feedback
parameter vector are tabulated in Table IT/. These components were
obtained from eqs. (3) to (5) and the values for 9 in Table II. Observe, in
Table ILl, that k 3 is insensitive to a and a ; that >'2 is not very sensitive$ to
a and _; and, that k 1 is rather sensitive to a and _. These observations are
utilized in the on-line learning experiments which are described in Section 4
of this part.

Note, finally, that the nominal controls in Table III represent the initial
controls (feedback parameter vectors} for the on-line-learning control
system in fig. 3 of this part.

Simulation Studies

In order to check the performance of the system under the action of the
nominal controller, the system in fig. 2 was simulated (on the IBM 7094).
The experiments that are described below were performed in order to observe
the effects bf the following on the attitude errors:

1. A time-varying parameter [a(t)]

2. An incorrect knowledge of the disturbance torques.

The simulated system is depicted in fig. 11. The assumptions made
during the simulations are listed below.

1. All states are available, which means that in eq. (1) the following
is true:

A
rxa (tit) = x a {t) (37)

Z. The plant parameters are generated, which means that$_"

A

-PA (tit) = _A (t) (38)
a a

*k 2 in eq. (4) appears, at first, to be only a function of a; however, as
demonstrated in fig. C-4 to C-b, p is a function of a and a. Thus k 2 is a
function of both a and _.

(t), the augmented plant parameter vector is given asia(t), a(t)lT-*@__PAa
L J

It contains the time-varying elements in Aa(t). The hat notation in eq. (38)

denotes the estimated value of PAa(t ) - (see Section 3 of this part, and
Appendix B).
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i
0.4 81 82 83 84 85 86 87 88 89 90

03 71 72 73 74 75 76 77 78 79 80

0.2 61 62 63 64 65 66 67 68 69 70

0.1 51 52 53 54 55 56 57 58 59 60

41 42 43 44 45 46 47 48 49 50
0 I I I I I I I I t I

0.1 0.3 0.5 0.7 0.9 a

-0.1 31 32 33 34 35 36 37 38 39 40

-0.2 21 22 23 24 25 26 27 28 29 30

"0.3 11 12 13 14 15 16 17 18 19 20

-0.4 1 2 3 4 5 6 7 8 9 10

Figure 10. Nominal Control Situations
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TABLE II

NOMINAL WEIGHTING FACTORS FOR PARTITIONED a - _ SPACE*

Control Control Control

Situation P x i 0- 5 Situation P x l0- 5 Situation _Px 10- 5

1 2.6216 31 0.

2 1.7112 32 0.

3 1.2031 33 0.

4 O. 8066 34 0.

5 O. 45O9 35 0.

6 0.1040 36 0.

7 0.2280 37 0.

8 0.5400 38 i.

9 O. 88OO 39 I.

i0 1.2200 40 i.

Ii 1.9494 41 0.

12 1.2358 42 0.

13 0.8150 43 0.

14 0.4705 44 0.

15 0.1503 45 0.

16 0.1647 46 0.

17 0.4827 47 I.

18 0.8080 48 i.

19 1.1420 49 I.

20 1.4300 50 2.

21 1.2772 51 0.

22 0.7605 52 0

23 0.4269 53 0

24 0.1344 54 0

25 0.1503 55 l

26 0.4391 56 l

27 0.7368 57 1

28 1.0457 58 l

29 1.3668 59 2

30 1.7006 60

_qt was assumed that PrI]11 _ 10-4 Ib-ft

(see Appendix C).
II l

6050 61

2852 62

0388 63

2017 64

4509 65

7135 66

9909 67

2834 68

5909 69

9131 70

0672 71

1901 72

3493 73

5378 74

7515 75

9879 76

2449 77

5210 78

8149 79

1257 80

7394 81

6654 82

7374 83

8739 84

0522 85

2624 86

4990 87

7587 88

0390 89

1 4116

1 1408

1 1255

1 2099

1 3528

1 5368

1 7531

1 9963

2 2631

2.5508

2.0838

1.6161

1.5136

1.5461

1.6534

1.8112

2.0071

2.2340

2.4872

2.7634

2.7560

2.0914

1.9017

1.8822

1.9540

2.0856

2.2612

2.4717

2.7112

2.3383 90 2.9759

I = 0.96 in the ofdesign
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TABLE Ill

COMPONENTS OF NOMINAL FEEDBACK PARAMETER VECTOR,

FOR PARTITIONED a - _ SPACE

Control

Situation Lanubda (I) Lambda (Z) Larnbda (3)

1 0.51241577E 03 0.32012990E 02 O.lO007569E 04

2 Oo41406672E 03 0.28777308E 02 0,10009669E 04
) 0,34725755E 03 0°26353654E 02 0°I0011329E 04

4 0,28440732E 03 0o23849835E 02 0,I0012890E 04

5 0o2|274444E 03 0.20627382E 02 0.10015031E 04
6 0o10238[17E 03 0,14309520E 02 0°10024892E 04

7 0o15139722E 03 0,17400990E 02 0.10010523E 04

8 Oo23277934E 03 0.215768C9E 02 0.10001820E 04
9 O,Z9704821E 03 0,24374093E 02 0,99967864E 03

10 0o34968521E 03 C,26445612E 02 0.99926999E 03
II 0,44182020E 03 0°29726090E 02 0,I0006524E 04

12 0,35183960E 03 0o26526952E 02 0, I0008534E 04

13 0.28578220E 03 0o239074[3E OZ 0,10010244E 04
14 OoZI721033E 03 0,20842760E 02 0.10012219E 04

15 0,12289727E 03 0.15677836E 02 0.10017799E 04

16 0o12863585E 03 0°1603969lE 02 0.10011468E 04

17 0°22000455E 03 0.20976394E 02 0,10002387E 04

18 0,28455357E 03 0,23855966E 0Z 0,99977802E 03

i9 0°33823504E 03 0°26009038E 02 0,99940665E 03

Z0 0°37845353E 03 0,275[1944E 02 0.9990470&E 03

Zl 0,35757940E 03 0.26742453E 02 0.10005277E 04

22 0o27597171E 03 0o23493476E 02 0.[0007252E 04

Z3 0.2068|568E 03 0,20_37929E 02 0,10009287E 04

24 0.11613119E 03 0,15240157E 02 0°I0014169E 04

25 0.12279706E 03 0.15671443E 02 0,I0009323E 04

26 0o20974722E 03 0o20481564E 02 0,I0001985E 04

27 0,27164067E 03 0o23308396E 02 0°99980772E 03

28 0,32357291E 03 0,25439061E 02 0°99948130E 03

29 0°36990263E 03 0,27199362E 02 0°99917414E 03

30 0o41258336E 03 0,28725715E 02 0.99887190E 03

31 0o24606750E 03 0,22184116E 02 0°10003626E 04

3Z 0o16897868E 03 0°I8383617E 02 0,IOG05921E 04

33 0°62389726E 02 O.IllTG472E 02 0.10014710E 04

34 0°|4212116E 03 0.16859488E 02 0.10004326E 04

35 0,21244408E 03 0.20612816E 02 0.10000485E 04

36 0.26721423E 03 0.23117709E 02 0,99976745E 03

37 0°31488565E 03 0.25095245E 02 0o99950411E 03
38 0.35834574E 03 0,26771094E 02 0.99924097E 03

39 0°39896089E 03 0°28247509E 02 0.99897253E 03

40 0°43748999E 03 0o29580061E 02 0,99869679E 03

41 0°81975605E 02 0°12804343E 02 0°99987989E 03

42 0.13787675E 03 0,16605828E 02 0°99999998E 03

43 0°18689569E 03 0,19333685E 02 0°99994592E 03
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Table III (Page 2 of 2)

Control

Situation Lambda (1) Lambda (2) Lambda (3)

44 0.23190515E 03 0.21536256E 02 0.99982427E 03

45 0,27413500E 03 0.23415166E 02 0.999663}6E 03

46 0.31430876E 03 0,25072246E 02 0.99947442E 03

47 0.35283[40E 03 0.26564314E 02 0.99926426E 03

48 0.39000000E 03 0.27928480E 02 0.99903640E 03

49 0.42601643E G3 0.29[89602E 02 0.99879330E 03

50 0,46105314E 03 0.303662C3E OZ O.99853680E 03
51 0.27181912E 03 0.23316051E 02 0.99959890E 03

52 0.25785350E 03 0.22709183E 02 h.ggg61232E 03

53 0.27145111E 03 0.23300262E 02 0.99959142E 03

54 0,29551801E 03 0.24311232E 02 0.9995185&E 03

55 0.32427634E 03 0.25466697E 02 0.99940030E 03

56 0)35520270E 03 0.26653431E 02 0.99924593E 03

57 0.38706923E 03 0.27823344E 02 0.99906293E 03

58 0.41926858E 03 0.28957506E 02 0.99885672E 03

59 0.45145288E 03 0.30048390E 02 0.99863111E 03

60 O.48345972E 03 0.31095328E 02 0.99838892E 03

61 0.37551271E 03 C.27404843E 02 0.99944512E 03

62 0.33755737E 03 0.25982970E 02 0.99940784E 03

63 0.33528478E 03 0.25895358E 02 0.99936919E 03

64 0.34763622E 03 0.26368019E 02 0.99929948E 03

65 0.36760435E 03 0.27114732E 02 0.99919390E 03

66 0o39182046E 03 0.27993587E 02 0,99905507E 03

67 0°41850042E 03 0.28930967E 02 0.99888747E 03

68 0.44659977E 03 0.29886444E 02 0.99869533E 03

bg 0°47552055E 03 0.30838954E 02 0.99848225E 03

70 0.50485449E 03 0.31775918E 02 0.99825098E 03

71 0.45618668E 03 0,30205518E 02 0.99932536E 03

72 0.40170757E 03 0.28344579E 02 0.99925373E 03

73 0,38875024E 03 0.27883695E OZ 0.999197_5E 03

74 0.39290489E 03 0.28032299E 02 0.99912289E 03

75 0.4C632032E 03 0.28506853E 02 0.9990204_E 03

76 0.4252_206E 03 0.29164432E 02 0.99858908E 03

77 0,44770679E 03 0.29923462E 02 0.99873065E 03

78 0,47235218E 03 0.3073bO43E 02 0.99854807E 03

79 0.49841845E 03 0.31572724E 02 0.99834418E 03

80 0.52538059E 03 0.32415447E 02 0.99812145E 03

81 0,52457634E 03 0.32390626E 02 0.99922382E 03

82 0,45691844E 03 0,30229735E 02 0.99912533E 03

83 0,43568504E 03 0,29518978E 02 0.99905342E 03

84 0°43344347E 03 0.29442944E 02 O.gg897194E 03
85 0.441640gOE 03 0.29720057E 02 O.99886892E 03

86 0,45628387E 03 0.30208736E 02 0.99874088E 03

87 0.47512093E 03 0.30825993E 02 0.99858805E 03

88 0.49676210E 03 0.3152C219E 02 0.99841206E 03

89 0,52029199E 03 0.32258084E 02 O.99821500E 03

90 0.54511824E 03 0.33018729E 02 0.99799901E 03
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GENERATOR

CONTROL

SITUATION
CHECK

CONTROLSITUATIONNUMBER(t)

TABLEIII I

Figure 11. System Simulation for Nominal Control Study

3. Every T units of time, _ (t) is checked in order to determine whether

the system is in the same control situation. If it is in the same

situation, no changes are made in the control gains; on the other

hand, if it is in a different control situation the control gains are

changed according to Table III.

The first assumption allows concentration on the system without the

state estimator. The assumption is made since, in a simulation, all signals

are available. It is not necessary to estimate the augmented plant param-

eters a(t) and _(t), by virtue of the second assumption, a, which varies very

very slowly, is fixed for each run, while _(t) is generated by means of a

digital function generator (program). The third assumption provides the

rule for updating the nominal controls in order to account for the time-varying

nature of the system. It provides the nominal controller with the adaptivity

referred to previously.

Five experiments were performed; the experiments are summarized in
Table IV. The first four were concerned with the effects of different varia-

tions and rates of variations in _(t) on the attitude error; the fifth was

concerned with the effects of poor a priori knowledge about the disturbance

torques on the attitude error. Each experiment was performed for the

following five values of the plant parameter a: a = 0.40, 0. 20, 0, -0.20

and -0.40. (For a = 0.40 and 0.20 the open-loop system, that is, the system

where PA/ _ 0, is stable; for a = 0, -0.20 and -0.40 the open-loop system

is unstable. )
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The attitude error results for each experiment are summarized in fig. 14

to 18, respectively. In every experiment the system performs better for the

more stable open-loop system. The poorest attitude error time histories
occur for a = -0.40; the best histories occur for a = 0. 40. The results for

the first four experiments are very similar. The experiments show that,

regardless of how _t) varies {continuously or discontinuously) or whether

a(t) varies slowly or quickly (0.2_ rad/sec to 2_ rad/sec), attitude errors

are contained for values of a >0. On the other hand, for values of a _0 the

attitude error may exceed -_0.20 arcsec over isolated intervals of time; how-

ever, the excursions from ±0.2 arcsec never exceed ±0. 5 arcsec. In many

cases the interval of time was very short, the largest being about 0.7 units

of time. The overall conclusion is that the nominal controller performs well

under the action of different types of _'s provided the on-line probability _

agrees with the off-line probability that I_1 < 10 -4 lb-ft.

If, on the other hand, the on-line probability differs from the. off-line

probability that I1 I < 10-4 lb-ft, attitude errors may exceed ±0. 20 arcsec

for long periods of time (if not for all values of time). This is demonstrated

in fig. 18, for Experiment 5, where the on-line probability that I_ I-<10-41b-ft.

was assumed to be 0. 10. It is clear from fig. 18 that xl(t ) does indeed
exceed ±0. 97 x 10 -6 radians for large intervals of time. It is worthwhile

noting, however, that in the worst case Iwhen a _ -0.40) I Xll never exceeds
4 arcsec, and in the better cases (when a > 0)Ix 1 never exceeds 1. 5 arcsec.

It is of interest to observe the time-varying behavior of the components

of the feedback gain vector. Observe, from fig. II, that

_TK-"

u_ (t) = __P_ (t)x_ a it) = Z -PA u 1 (t- kT)x (t) (39)
k=O - a

v

where __Pf is the feedback parameter vector
_thassociated with the control

s ituatio n. $*

PA(t) is seen, from eq. (39), to be a piecewise-constant function of time.

Typical v'_riations for each of the components of _A (t) are depicted in figs. 19,

20 and 21. The functionskl(t), k2(t) and k3(t) are shown for only one period in

the variation of a(t); however, since a(t) is periodic, kl(t), kz(t) and k3(t ) are

also periodic, each with the same period as _(t).

In general, _A (t) {s stepped to values which depend on the magnitudes
of a and _(t), the--rate at which a(t) varies and the decision time T (see

fig. 11). PA (t), quite obviously, is different for different choices of the
decision time. From figs 19, Z0, and Z1 it must be noted that the compo-

nents of P A it}, in most cases, look like zero-order approximations to
sinusoidal- or rectified- sinusoidal-type functions (unequal lobe s).

$See third footnote under Table IV.

**If the feedback gains were fixed (perhaps at some average values) then,

according to the preceding sensitivity analysis, attitude errors would
exceed ±0. 20 arcsec.

6O



J]-I-til_---_
z

i

liillilil I

I

111tl -:"-
11II _z
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Fisure 15. IXl(t) l for 5 Values of a (Experiment 2)
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• U _ • . .
The optxmal control 2(t) xs also depxcted on fxgs. 19, 20, and 21.

Observe that after a short initial time-interval u_{t) becomes quite random.
This is expected, since

u_(t)= _3(t)_(t) (40)

if the system is performing satisfactorily, that is, drivin_ attitude errors

to within ±0. Z0 arcsec. Note also that if _(t) is bounded u_ will also be
bounded.

A typical phase-plane plot is depicted in fig. 22. The four plots depict

the trajectory of xzas a function of x I for the following: (a) 0 -< t -< 0.20,
(b) 0.22 _< t _< 0.44, fc) 0.46 _< t _< 0.80, and (d) 0.82 -< t -_ 1.72. Different

scales are used for x 1 (t) and x2(t) on each plot. The predicted limit cycle
behavior is evident from (d) in fig. 2Z. It must be observed that for 0.8Z -< t

< 1.72 the limit cycle is contained to within ±0.97 x 10 -6 radians for x 1 (t),

as desired. From fig. 14(a), which presents I xl(t)] for the case depicted
in fig. 2Z, one observes that for Z<t<g. 7 and 3<t<3. 7 [xl(t )]>0. 97 x 10-6;

hence, for these intervals of time the limit cycle in {d) would exceed
±0. Z0 arcsec.

Summary and Conclusions

An adaptive controller has been designed. It is designated nominal

controller, since all of the available information about the plant and its

environment has been incorporated into the design. The design proceeded'

in three steps: (1) for fixed values of plant parameters, nominal gains were

obtained using stochastic optimal-control theory; (2) for specific ranges of

the plant parameters, which were denoted control situations, nominal gains

were obtained using the results from Step (1) and sensitivity analyses; and

(3) for the controller designed in Step (Z), simulations were performed in

order to observe the effects of some of the assumptions made during the

design on the attitude error.

Although parameters and states were not estimated during these

simulations, the following were observed: (1) a time-varying disturbance

parameter [ a= a(t)] degrades attitude error more when the open-loop system

is unstable than when it is stable and, in both cases, the degradation is not

very appreciable; and (2) disturbance levels greater than those anticipated

during the design of the nominal controller may cause attitude errors to

exceed ±0. 20 arcsec, depending upon whether or not the open-loop system
is stable or unstable.

The effects of different types of estimation errors on the attitude error,

as controlled by the nominal controller designed in this section, are
discussed in Section 3.
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The nominal control system serves two purposes in relation to the on-

line-learning control system shown in fig. 3. First, it is used as a system

with which the performance of the on-line-learning control system may be

compared, and a comparison of this type is important if the on-line-learning

control system is to be judged fairly. Second, simulations of the system
under the control of the nominal controller point up the reasons, if any, for

wanting to include an on-line-learning capability. Hence, the nominal con-

troller not only serves to provide the justifications for on-line-learning, but

also provides a reference for statements made about the performance of the

on-line-learning control system.
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Section 3

STATE AND PARAMETER ESTIMATION FOR CONTROL

Introduction

It was mentioned in Section 1 and discussed in Section 2 that estimates of

the three states x,(t), x2(t), and _(t) are needed in order to implement the
control u*(t) (see_ig. 3). It was also pointed out in those sections that

estimates of the plant parameters, a(t) and a(t) are needed for the following
reasons: (1) to provide the initial choice for u*(t) in fig. 3, since the
nominal control is prestored for different regions in the a-a space (nominal
control situations), and (2) to implement a control situation concept which is
utilized during on-line learning (discussed in section 4).

A technique for estimating the three states and two parameters simul-
taneously is described in Appendix B. This technique represents an extension

of Kalman filtering to the combined estimation problem, that is, the problem
of estimating states and parameters simultaneously. It results in a non-
linear estimator.

The purpose of the present section is twofold. First, results are pre-
sented in connection with our specific combined estimation problem, followed
by a description of the experiments and results for the system under the action
of the nominal controller that was designed in the preceding section but with
the loop closed around the filter instead of the plant.

Combined Estimation

The structure of the combined state and parameter estimator is depicted
in fig. B-2 (at this point it is recommended that Appendix B be read in its
entirety). For convenience, the equations which describe the estimator are
summarized below, since many of them are referred to throughout this
paragraph.

Summary of filter equations is as follows:

^ A

(nln)= . (nln-1) + (nln) (4Z)

7'1



A
q (n+lln) = _, (n+l, n) _1 (nln) + _ (n+l, n) u (n) (43)

P (nln) = P (nln-1) - K*(n) M*P (nln-1) (45)

P (n+lln) = _ (n+l,n) P (nJn) ¢*T (n+l,n) + C d (46)

#
where IV[ , ¢ (n+l, n), _ (n+l, n) and _* (n+l, n) are defined in eqs. (B42),
(B36), (B37) and (B38), respectively. In addition, the discrete measurement

noise covariance, R d, and the discrete disturbance noise covariance, C d,
are as follows:

(flit0)(rd:l0)s =_ (47)

Rd = RTs = 0 rzzTs rd22

C d = CT s

0 0 0 0 0

0 0 0 0 0

0 0 VT 0 0
s

0 0 0 _llTs 0

0 0 0 0 _2zTs

0 0 0 0 0 \

0 0 0 0 0

0 0 V d 0 0

0 0 0 _dll 0

0 0 0 0 P'dZ2 /

(48)

If the noise and disturbance covariances are known a priori then the

filter in fig. B-2 is the optimal filter, since the covariances called for in
the derivation of the optimal filter are the true ones. In the present
application, however, measurement noise-levels were not prespecified

and the disturbance noise-levels which appear in the equation for _PAa(t )
[eq. (B17)] were not fixed ahead of time. The only noise level
which is fixed, in a certain sense (as discussed in Appendix C) is the

disturbance torque noise-level. The approach adopted was to consider the

four covariances r.._, rdZZ, I*dll and _d2_ as design parameters for the
combined estimatodr!nence, me iilter is not optimal in the derived sense,

it is sub-optimal in a design sense.
m

_ In order to differentiate the sub-optimal and optimal filters, let R,t and
C. be the design covariances, whereas R. and C. are the true (but unk_*own)

Q . . Q _: Q . .
covarzances. For the latter covarzances, K (n) ls as defined in eq. (44),
whereas for the former K*(n) becomes K (n), a sub-optimal gain.
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It is also possible to view the disturbance covariance, V_, as a design

parameter, initially, even though it is known. This is a resu_It of the following
theorem, the proof of which is found in ref. i.

Theorem. -- The Kalman filter is not dependent on the absolute values

of the disturbance and measurement noise-levels, but only on the ratio of the

two. For example,

m _ m_

K (n;R d,C d) = K (n;cR d,cC d) (49)

where c is an arbitrary positive constant.

The overall approach to the design of a working estimator was to first

design a sub-optimal state estimator and then to design the combined esti-

mator. The parameters a(t) anda(t) were frozen and were assumed known

during thedesign of the sub-optima ! state estimator. The covariances

1 and rcl._ obtained during this design were then fixed during the design of

c°mbin_e_estlmat°r; _dll and _d22 were varied during the latter design.

Good results were obtained for the state estimator, even though an

uncontrollable state[_(t)] was estimated; however, it was not possible to

obtain satisfactory estimates of a(t) and a(t)using the combined estimator.

The design of and some experimental results for the sub-optimal state

estimator are described below. Some analytical as well as experimental

reasons why the combined estimator failed to provide satisfactory parameter
estimates are also discussed below.

State Estimation. -- The following steps were performed as part of

the design of the sub-optimal state estimator:

w

(1) Vq was set equal to and the elements of R_were varied until good
es_timates for x 1 (t) :n_ xg(t ) were obtained [r%gardless of the quality

of the estimates of _ (t)].

(2) R. was fixed from the results of Step 1 and V d was varied until good
es_timates for all three states were obtained.

(3) V d from Step 2 was scaled to the actual V d and, as a result of the

theorem stated in the preceding paragraph R d was similarly
scaled.

SThe filter in fig. B-2reduces to a state estimator when_dll and _d22 are both

set equal to zero, and when Y1 and¥2 in eqs. (B29) and(B30) are also set
equal to zero.
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Fifty-eight different filters were designed. NASA requested an informal

tabulation of the qualities of each design, those that were failures as well as

those that were successes. This information has been transmitted to NASA

and is not included in the present report. The values of r'dll and rdZ 2 which

resulted from this study are _

-6

ar--'ll = 7.70 x I0 (50a)

rL22 = 7.70 x i0 -12 (50b)

in addition,

V d = 3.84 x I0 -12 (50c)

During the design of the sub-optimal state estimator, decisions were

made concerning the relative qualities of the 58 different designs. These

decisions were made, for the most part, by observing the data output from

the IBM 7094 simulation. The data consisted of the actual states, estimated

states, estimation errors, and percent estimation errors; the data was printed

out every 0.01 units of time iT s in eqs. (47) and (48)was 0.001 in these
designs] during each unit of time. At the time that the Final Report was

written, a concise way of summarizing the performance of each filter was

discovered. It is especially useful for making decisions concerning the

relative qualities of different filters, and is discussed, briefly, next.

First, the percent estimation errors for attitude, rate, and _(t) are

plotted as, for example, in fig. Z3 for Filter 57. The covariances of Filter

57 are those given in eq. (50a, b,c). The discontinuous nature of these plots

is due to the fact that the percent estimation error grows large when the

actual function passes through zero (changes sign). Next, the cumulative time

for which the percent error is contained within a specific range is plotted,

as, for example, in fig. 24. The cumulative frequency function (which is an

approximation of the probability distribution for I percent estimation errorl)

provides a concise means for comparing the different estimates from a single

filter, and, in addition, provides a concise means for comparing estimates

from different filters (fig. Z5).

In fig. 24, observe that Filter 57 estimates xl(t) and xz(t) about the same,

whereas it estimates _(t) much better. For example, Z0%-or-less estimation

errors occur 90% of the time for _(t) while they occur only 66% and 69% of the

time for x l(t) and x2(t), respectively. It is also interesting that such similar
plots occur for the cumulative frequencies associated with percent estimation

errors for xl(t), xz(t), and _(t), as compared with the rather diverse percent
estimation error plots in fig. Z3.

*a and a were set equal to O. 40 and -0.80, respectively, during the study.
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Figure 23. Percent Estimation Errors
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Figure 24. Cumulative Frequency Function for I Percent Estimation Error]
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Three different filters are compared in fig. 25. During the design, each

one of these filters was judged good; however, Filters 56 and 57 were judged

better than Filter 54. Observe that for values of[percent attitude - estimation

error [ less than 10% this judgement is wrong; Filter 54 is better than the

other two filters. Awrong judgement occurs also for values of [ percent

attitude - estimation error ! between 45 and 50%. On the other hand, the

judgement is correct for values of [ percent attitude - estimation error ]

between 15 and 40%; hence, for large ranges of I percent attitude - estimation

error I the cumulative frequency plots substantiate earlier judgements

regarding the relative qualities of different filters.

State and Parameter Estimation. -- The combined estimator depicted

in fig. B-2was simulated on the IBM 7094. The covariances in eq. (50)were

used during this study; different experiments were performed in an effort to

choose values for Ixdll and _tdZ 2 in eq. (48).

In one experiment cr was assumed known* and a was estimated. In

another experiment a was assumed known** and awas estimated. The values

of IX... and IX._ were varied over wide ranges during these experiments
d£1 .cl_ .

(ix_.lin the firs_ experiment and li__ Z in the second experiment); however,
ed_r_ates for a and a were not acl_(dved_. Some results from the experiment

in which a was estimated are summarized in fig. Z6. For each run (identified

by a different filter number) the actual value of a was 0.40 and the initial

estimate of a was chosen to be 0.30. For very small values of _dl" thesteady-state estimate, a did not differ from the initial estimate. For

larger values of Ix .... hoS&Se#er, the steady-state estimate was worse than
the initial estimated, i I .Time did not permit a more extensive study; one, for

example, in which the effects of different initial estimates on the steady-state

estimate are studied (since the combined estimator is nonlinear, initial

conditions are important).

It was also observed that, regardless of how poorly the filter estimated

a(t) and a(t), it still estimated xl(t), xz(t) and _(t) relatively well. This
suggests that the state estimator is relatively insensitive to a and 0l. That

this is indeed the case was demonstrated in an experiment during which

wrong values for a and a were used in the state estimator. Some results

from this experiment are tabulated in Table V for attitude errors. Similar

results were obtained, in each case, for xz(t) and _(t).

*ixd22 was set equal to zero.

_dllWaS set equal to zero.

_/l(t) and _/2(t), in eq. (B17)were set equal to zero during these experiments.
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FILTER 72 I

10 -6

.FILTER 69

0.2 0.4
as.s.

Figure 26. Steady-State Value of a, as.s., For Different Filters
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The reason for this insensitivity is that a(t) and ¢v(t)are very small com-

pared to the feedback gains Al' AZ' and A3;hence' the closed-loop response
is insensitive to variations in a and cx. This can also be verified, in part,
analytically. For example, _(n[n) in eq. (42) can be written as

_l(nln): K*(n)z(n) +

[_ (n, n-l)

[ I-_,*(n)M*.].

+ (n,n-1)^*] (n-lln-l). (51)

Eq. (51) follows from eqs. (41) and (43) and the fact that

where

u (n) = A*_(n-lln-1) (52)

A _ =
(kl' k2' )'3' 0, 0). (53)

It is relatively straightforward to show that in the matrix

[ _(n,n-1) + A(n,n-1) A*]

the terms due to aA(n-1[n-1) and A (n-fin-i) are negligible compared with the

terms due to A *, which substantiates the above conjecture.

The fact that the combined estimator did not provide estimates for a(t)
and _(t) in this case does not mean that the estimator cannot be used in other

applications. This estimator was used with success byWaymeyer, et al in

reg. i, and is currently being used with success at Douglas in connection

with an adaptive controller for a maneuverable re-entry vehicle. In both

of these applications, however, the estimated parameters are either of the

same order of magni.tude or larger than the feedback gains.

Nominal Controller SimulationStudies

In this subsection (which is a continuation of the Simulation Studies in

Section Z),the performance of the system under the action of the nominal
controller is, once again, investigated. The main difference between the
simulations described below and those described in Section 2 is, however,

that here the loop is closed around the output of the state estimator (des-
cribed in the preceding subsection), whereas in Section 2 the loop was closed
around the plant. The experiments that are described below were performed
in order to observe the effects of the following on the attitude errors:
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(1) State-estimation errors.

(2) State-estimation errors an___d parameter-mismatch errors.

Seven experiments were performed; they are summarized in Table VI.
The first four were concerned with the effects of state-estimation errors on

the attitude error. The simulated system for these experiments is depicted

in fig. Z7 (compare with fig. 11). The last three experiments were concerned
with the combined effects of state- and parameter-estimation e*_rors. Since it

was not possible to obtain estimates for a(t) and _(t) using the combined esti.-
mator described in the preceding subsection, and since time did not permit

other means for estimating the pai-ameters to be studied, pseudo-estimation

errors were assumed. The simulated system for these experiments is depic-

ted in fig. 28.

Observe the difference between figs. 27 and 28. In fig. 28 the actual

plant parameters are both corrupted in some statistical fashion. The corrup-

ted plant parameter vector, or, pseudo-estimated plant parameter vector,
^,

denoted P---A (tit), is
a

_PA (tlt) = PA (t) + P A (t), (54)
a a a

wherePA (t) is a (Zxl) pseudo-estimation error vector. In Experiments 10

and 11 the components of _.P A (t) are uniformly and normally distributed,
a

respectively. In these experiments

E Aa
(t) = O.

The density functions for the two distributions are depicted in fig. 29.

Experiment 12 the components of .P A (t) are normally distributed and
a

{ _' (t)] i_ 0.E P Aa

In

Both the interval of the uniformly distributed error and the variance of

the normally distributed error were chosen so that (_', _')T could lie in a

control situation different from the one in which the actual parameters are

in. For example, if a = o and a = -0. 50, so that the plant is really in control

situation 45 (fig. i0), (Aa',A, )T may be in either control situation 45, .44, 46,

1 1-54, 55, 56, 34, 35, or 36 (assuming that E _Aa(t ) = 0).
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In Experiments 6 to 9 the actual plant parameters (generated} are utilized

in both the Kalman filter and the mechanism for updating the control gains.

In Experiments I0 to IZ, on the other hand, corrupted (mismatched} plant

parameters are utilized in both of these places, as would occur if a(t} and

a(t) were actually estimated.

The attitude error results for Experiment 6 are summarized in fig. 30

{the results for Experiment 7, which differs from Experiment 6 in that a

small amount of measurement noise is introduced in the former, are omitted,

since they are similar to the results in fig. 30}. These results should be

compared with those in fig. 14. Apparently, state estimation-errors degrade

attitude error by from one to two orders of magnitude. This represents the

effect of neglecting the estimation errors during the design of the weighting

factor, p, in Appendix C [eq. (C13}].

In Section 2, it was shown that, for the system with the loop closed around

the plant, u2{t }--_ k3(t} _ (t) after a short initial transient. For the system with

the loop closed around the filter this approximation is no longer valid, due to

estimation errors. In the random-limit-cycle mode, u_(t) is proportional not
A

only to _ (tit) but also to x 1 (tit }, and Ax2 (tit), since xA1 (tit }, Ax2(tlt } andS(tit }

each settle to the same order of magnitude.

The next few paragraphs shall distinguish between the nominal control

with the loop closed around the plant, Uzp(t }, and the nominal control with

the loop closed around the filter, U_F(t ). It shall be shown, for a typical

case, that the control error signal (U2F--ugp) does indeed degrade attitude

error from an order of magnitude of 10 -6 radians to an order of magnitude

of about 10 -5 radians; that is to say, this section will demonstrate that

{U2F--u2p } leads to an attitude error of approximately 10 -5 -10 -6 = 0.000009

radians.
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Figure 30. l Xl(t) for 5 Values of a (Experiment 6)
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The functions * and *
U2F U2p are plotted in fig. 31 for the case when the

#

open-loop system is a double integrator, uzp was obtained from a simulation

of the system in fig. 11, whereas u2F was obtained from a simulation of the

system in fig. 27. The initial conditions, integration times, and random

sequences used in both simulations were identical. Observe the close simi-

larity between u2F and u2p and observe, also, the small amplitude and oscil-

latory behavior of the control error signal, which is also plotted in fig. 31.

ge @

In order to demonstrate that (u2F--ugp ) leads to an attitude error

degradation of 9 x 10 -6 radians, it is first approximated as t

g¢ #

(uzF--Uzp)~_q).005 sin [2_(3. 5)t]. (55)

Denoting the component of the attitude error due to (UgF--Uzp) as XlF p,
it follows that

P~•ff0005sin21.98rdT z (56)

XlF P- ±i0.35 x 10 -6 sin 21.98t. (57)

The close agreement between the amplitude of XlF P
-6

error degradation of 9x i0 radians must be noted.

in eq. (57)and the attitude

Experiments 8 and 9 represent disturbance and measurement-noise level

sensitivity studies, respectively, and are closely related. The purpose of

Experiment 8 was to determine the disturbance level for which attitude errors

are just contained to within ±0. Z0 arcsec, with the loop closed around the

filter. As expected, by lowering the disturbance noise level [V = 0.48 x 10 -8 ,

0.48 x 10 -10, 0.48 x 10 -14 and 0.48 x 10 -18 correspond to di'sturbances of the

order of magnitude of 10 -4 , 10 -5 , 10 -7 and 10 -9 lb-ft., respectively] it is

possible to contain attitude errors, even though state-estimation errors exist

(fig. 32). The disturbance noise level for which attitude errors just begin to
remain within ±0.20 arcsec is between 0.48x 10 -10 and 0.48 x 10-14. A value

of V = 0.48 x 10-1Z was assumed for Experiment 9, the purpose of which was

to determine how much measurement noise could be introduced before attitude

errors would once again become greater in magnitude than 0. Z0 arcsec.

_The frequency of 3. 5 cps was obtained by counting the number of positive

peaks of (U_F--u_p) in fig. 31, and dividing this number by 5 units of time.

The amplitude of 0. 005 is an average value.
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As the measurement noise level increased, it was observed that the

estimates of x 1, x Z, and _became poorer. This was especially true for the

estimates of 6, which were wrong by from three to four orders of magnitude

when rdl 1 = rd22 = 10-6. In this case, the control was much larger than it

was when rdl 1 rd22 10 -10 -14= = or i0 , larger by two orders of magnitude.

The measurement noise level for which attitude errors just begin to exceed

-10 -14
•-0. 20 arcsec is seen in fig. 33 to be between I0 and 10

The results for Experiment 10 are summarized in fig. 34. Due to the

close similarity between the results obtained for Experiment 11 and those in

fig. 34, the results for that experiment are omitted. Observe that zero

mean parameter mismatches do__not further degrade attitude errors from

the degradation incurred by closing the loop around the filter. The purpose
of Experiment 12 was to investigate the effect of non zero-mean parameter
mismatches on the attitude errors. Some results from this experiment are

depicted in fig. 35a. Note that even with fairly large parameter mismatches

a further degradation in attitude error does not occur. Apparently, I Xl(t)l

is rather insensitive to variations in a(t) and a(t). An interesting experi-

ment whith would point up the effects of parameter mismatch (as distinguished

from Experiment 12, where the effects of parameter mismatch and state-

estimation errors are blended), is one in which the loop is closed around the

plant, as in fig. 11, and various non zero-mean normally-distributed pseudo

parameter-estimation errors are introduced. Time did not permit this
experiment to be performed, however.

Due to the randomness of the plant parameter pseudo-estimation errors,

the nominal feedback gains kl(t), k2(t) and k3(t) in Experiments 10 to 12 are

nonperiodic random sequences. This is illustrated in fig. 35b and 35c for

Experiments 10 and 11, respectively. In Experiments 6 to 9, on the other

hand, the feedback gains are periodic [with period equal to that of a(t)] and

vary exactly the same as the gains in Experiment 1 (figs. 19, 20 and 21 for

example ).

Summary and Conclusions

A state estimator, for use in the nominal controller, has been designed.

It is sub-optimal, since the covariances which are used by the estimator do

not correspond, in general, to the true noise and disturbance covariances

(unknowns in this study). The state estimator was shown to be relatively

insensitive to variations in a(t) and a(t), because of the largeness of the

feedback gains as compared to the smallness of a{t) and a{t). Due to this

insensitivity, it was not possible to obtain estimates of a(t) and a{t) from
the combined estimator.
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Simulations involving the nominal controller, in which the loop was
closed around the output of the state estimator, were performed. The
simulations demonstrated that: (1) attitude errors are degraded bybetween
one and two orders of magnitude due to state-estimation errors when

disturbance torques are of the order of magnitude of 10 .4 lb-ft; (2) if
disturbance torques are only of the order of magnitude of 10-61b-ft, attitude

errors will remain less than ±0 20 arcsec, even though estimation
errors occur {provided measurement-noise level is small); (3) large
measurement-noise levels degrade attitude errors further; and (4) attitude

errors are not degraded further when parameter mismatch (uniformly or
normally distributed) occurs.

State-estimation errors can be compensated for during the design of the
nominal controller, since their presence and effect (on attitude error) can
now be anticipated, off-line. For example, since attitude errors are
degraded by between one and two orders of magnitude, t in Appendix C
could be chosen [ specifically in eqs. (C22), (C23) and (C26)]to be between

one and two orders of magnitude smaller than 0. 20 arcsec, its present
value. C 1 would then be larger; hence, the weighting factor associated with
a nominal control situation, P, would also be larger (in Section 2, P = C1
for most of the nominal cont{ol situations). This means that the entries in

table III would be modified; a new adaptive nominal controller results. This
design modification remains to be verified.
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Section 4

AN ON-LINE LEARNING PROCEDURE

Introduction

It has been shown in the preceding sections that, if disturbance torques

exceed their a priori design amplitudes attitude errors may exceed
±0. 20 arcsec. The overall objective is to achieve fine attitude control (see
Appendix A); hence, it may be necessary to modify the nominal controller
designed in Section 2 if that controller cannot contain attitude errors to within

±0. 20 arcsec. The system depicted in fig. 3 has been proposed for updating
the nominal controller, when and if modifications are necessary.

The present section is concerned with the following aspects of the on-
line-learning control system in fig. 3: 1) on-line goal circuit, 2) on-line
learning algorithm, and 3) simulations of the overall system.

The on-line goal circuit processes measured data in the form of on-line

cost functions. The next subsection distinguishes between an overall perform-
ance index and a sub-goal performance index. The overall performance
index is related directly to the statement that attitude errors must be kept
to values less than or equal to ±0. Z0 arcsec. The sub-goal performance
index is related to the overall performance index through an average and is
used in the on-line learning algorithm.

The on-line learning algorithm is heuristic and error-correcting. Error-
correcting is used to mean that decisions to update the feedback gains are
made only if the present performance is worse than the preceding perform-
ance. Heuristic is used to mean that no convergence theorem is provided for
the algorithm. Control situations are utilized in the on-line learning proce-
dure. A distinction between off-line and on-line control situations is also
made in this section.

Three experiments involving the on-line-learning control system are
described in the subsection titled Simulation Studies. Their objectives are to
demonstrate the error-correction algorithm derived in the subsection titled

Error Correction Learning Procedure and to determine some of the design
parameters which enter into the algorithm. These experiments were per-
formed at the very end of the study and due to insufficient time are incomplete.
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On-Line Cost Functions

The overall objective is, as pointed out above, to contain attitude errors
to within ±0. 20 arcsec. In connection with the laser communication

satellite application, it was not specified by NASA whether attitude errors

must be contained at every instant of time or over intervals of time, in an

absolute sense or in some probabilistic sense. Due to the stochastic na+.ure

of the attitude errors, it was felt that it is more meaningful to look at the

behavior of attitude errors over an interval of time (T) rather than at discrete

values of t; hence, it was assumed that the overall objective is to contain
attitude errors in an absolute sense over fixed intervals of time.

In Section 1 a Basic Premise was stated in connection with the necessity

for on-line learning. It is, that for on-line learning to improve a system's

performance on-line, new information must be made available to an on-line

performance assessor. In this study it was assumed that the new informa-

tion is contained in the measured attitude error, z.(t); for, truly, the effects

of the actual disturbance torques are observable inizl(t).

It is desirable to weight positive and negative attitude errors alike; hence,

ir_the cost functions discussed below, the squared measured attitude error,

z_(t), is used, since it is the simplest function of the measured attitude error

which is never negative and thus does not have the disadvantage of having

positive attitude error contributions cancelled by negative attitude error
c ont ribution s.

The overall goal or performance index is denoted P'--I (k,_, m). It provides

the cost for having to iterate the control u_(t) in fig. 3 the mth time the _th

control situation is re-entered. It is assumed, first, that it is not very

likely that the iterations of uS(t) will be completed the first time the lth control

situation is entered and, second, that the .maximum number of iterations

associated with the first, second ...., thm ..... etc. entries into the 1th

control__ situation is k 1, k 2 ..... k m ..... etc., respectively. The expression
for PI (k, J_; m) is

Pl (k,l;m) = z (k,_;t)dt

kT
(58)

where the special notation used for z 1 is control situation oriented, and is
elaborated upon below.
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In keeping with the overall objective of containing attitude errors in an

absolute sense over fixed intervals of time, the following theorem is proved

for the case when there is zero measurement noise. The more general

results are discussed in the final paragraph of this section.

Theorem

If nl(t ) = 0 andP-I (k,l;m) -< 5(¢), where 6(¢) = {2T, then

]Xl(k, l;t)l < { for kT < t < (k+l)T andk = 0, 1 .....

Proof: When nl(t ) = 0 Zl(k, l;t) = Xl(k, l;t) and

PI (k, _;m) = x (k, l;t)dt
kT

{59}

It is assumed that x 1 is bounded during each interval of time; that is,

] Xl(k,I;t) l -< Xl(k) for kT< t <(k+l)T (60)

The above assumption is felt to be reasonable for the application. It follows,
• "_at

I:TI (k,f;m) _< xZI(k)T for kT < t < (k+l)T (61)

In eq. (61), if Xl(k ) = {, such that 6({)_ 62T, then in eq. {60)

IXl{k,I;t)] _< e for kT < t <(k+l)T {6Z)

which completes the proof.

Due to large initial attitude errors, which may result from a poor initial

choice of u*(t), that is to say, a poor choice for P__ (the nominal feedback

parameter vector associated with the lth control*situation), it is probably_

more useful to weight more recent observations of the performance index PI

more heavily than older observations. To this end, the sub-goal performance

index PI(k,l;m}, defined below, is used in the decision making procedure for

updating the on-line control gains, and not the overall goal. As is shown,

however, the control gains are modified only when the overall goal is violated.
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The sub-goal performance index is given recursively as

PI (k+ 1,1;m) = 7PI (k,f;m) + (1-7) l_ I (k+l,f;m) k = 0, 1...
T

(63)

whe re

1 _-_ (0,i;m)PI (0,f;m) = T
(64)

and

0 <7- < i. (65)

From eqs (63) and (64), it is straightforward to show that

7 k
Pl (k,.I;m) : _- 1_

k

(0,f;m) + (1-7)
k-j

T 7 P_ (j, f;m)

j=l

(66)

where 1 < k -< k
m

It must be observed, that two observations of I_I (j,f;m) made at j=q and

j=q+s are weighted, over any iteration interval kT < t < (k_Cl)T, in the

following proportfon:
/

(i-7___/)7 k-s-q / (I-7) 7k-q : 7-s
T / T

By suitable choices for 7 , the appropriate emphasis may be placed on recent

and past observations. The name linear reinforcement averaging is associated

with the averaging process in eclc - (66), when 0 < 7 < I. When 7 = 0

PI (k+l,J;m)is proportional to PI (k+l,l;m), and, wheny =1 PI (k+l,_;m t is

proportional only to the initial cost I=TI (0, f;m). In addition, if 7 = 1 - "(][_'Z7

then eq. (66) reduces to a standard averaging process. The term linear

reinforcement averaging is borrowed from the so-called linear reinforcement

learning model which is used in learning theory (ref. 2, for example). The

linear reinforcement learning model is of the same form as in eq. (66).

Discussions on suitable choices for 7 are continued in the subsection titled

"Simulation Studies. "

Error-Correction Learning Procedure

On-Line-Optimal Feedback Gains. --In order to distinguish between the

nominal controller designed in Section 2 and the learning controller designed

in this section, the following notation and definitions must be introduced:
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Q
I. u _ (t) is the on-line-optimal control, and is initially equal to the

nominal control, u2(t), deslgned m Sectlon 2.

.

u @ ^
_(t) = A (t)Xa(t[t) (67)

A"_(t), the on-line-optimal feedback gain matrix, is a function of

which control situation the system is in; for the Ith control

situation,

A*:t) --- A*1(t). (68)

3. It is more convenient to work with the _on-line-optimal feedback

parameter vector pxl(t) than with A*l(t); however,

p it = A*_t)

from which it follows, that for the _th control situation,

(69)

4.

u*(t) = PA](t _XAa(tlt). (70)

In the on-line-learning procedure, discussed shortly, P_(t) is

obtained iteratively. It is incremented once every T units of time.

The k TM iterate of PA_-_(t) , P_J_(k;t) , is given as

k

_PA_(k;t) : (t-iT) (71)
_-O_-

,

and is a piecewise continuous function as illustrated in fig. 36 for

one of the components of P*f(k;t) .
-A

Since the on-line-optimal control is initially equal to the nominal

control,

__(o)= P_ , (7z)

PAI denotes the nominal gains, designed in Section 2, for thewhere

1 TM control situation.

In connection with these definitions, the following observations are made.

First, note that time variations in A $(t) occur in two distinct modes. A _ (t)

varies according to eq. (71) for as long as the system remains in the lth

control situation. Here the variations are due to the on-line optimizations

which are performed individually for each control situation. On the other
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Figure 36. Variations in One Element of_PA (k;t)
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hand, As(t) als9 varies as the system moves from one control situation into

another. This movement is reflected as variations in the index 1. The

second type of variation in the on-line-optimal feedback gain matrix is
identical to that observed for the nominal gains (figs. 19, 20, and 21, for
example). The first type of variation, on the other hand, represents a tran-
sient phenomenon which is associated with each control situation. It persists
until satisfactory performance is achieved for all points within the control

situation, at which time t__:1;ekr_)oirSm:On:t_ftth:d;:_e_b s ::_:n::::tiaslltime thereafter, unless e
factory once again.

Note, also, that since A* is a function of 1, k, and t, __ is also a
function of these three parameters; hence, the measured attitude error,
zl(t ), which is used in eq. (58), is also a function of 1, k, and t; that

explains the notation used in eq. (58). This functional dependence of the
states _n _ and k is used only for the purposes of clarification; otherwise,
the dependence is assumed.

On- Line- Learning Algorithm. - - The _n-line- learning procedure is
embodied in an algorithm for updating P*/_ (k;t) in eq. {71). The algorithm
relates the sub-goal performance index, discussed previously, to decisions
as to when and if P$l (k;t) should be changed (updated). These changes occur
only if Ixl(t)l>0. 20 arcsec; hence, the learning algorithm is referred to
as an error-correction learning algorithm. The algorithm is described
below for the 1TM control situation.

The first time the ithcontrol situation is entered, m in eq. (66) is
unity, and the expression for the sub-goal performance index is

¥k T k (j+I)T

PI(k,l;1) :--_--fzl 2(0,1;t)dt + (1-_....__) f z
j_ yk-j 2T .= 1 1 (j' 1 ;t)dt

0 jT

k = O, 1 ..... k 1 (73)

The system responds for the first T units of time under the action of the

nominal controller [eq. (72)]. The value of PI(0,1;1) is computed; however,
it serves merely as a reference value for the sub-goal performance index
during the next iteration interval. In the present error-correction algorithm,
there is no basis for a change in the feedback gains during the interval
T<t< 2T.

For T<t<2T, PA 1

_{1) = o

(k;t) = P_l (1 ;t) __ P_i (O;t); hence,

(74)

The above ensures that the system operates under the action of the nominal
controller for the second T units of time as well as for the first T units of
time.
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The value of PI(1,_;1) is computed and compared with PI(O,_;1). If

PI(I,I;I) -< PI(0,1;l) - E'(0), _(2) in eqj1 (71) is set equal to 0, which is
indicative of a satisfactory choice for P_ (l;t). On the other h-and, if
PI(lfl;l) > PI(0,_;l) - E'(0), which is iri_licative of a degradation in perfor-

mance, ___(2) is chosen different from O. The exact rule for choosing ___(2) is

deferred to a later discussiDn, so as not to break the continuity of the present

discussion. E'(0) is a threshold function which is a design parameter and is

elaborated upon in the next subsection.

As k (and, subsequently, t) evolves, the on-line-optimal feedback

parameter vector in eq. (71) evolves, until, for k=k 1

k 1

__PX_ (kl;t) : _ lr(i)U_ (t-iT)
i=0 - 1

(75)

The system is assumed to leave the_ TM control situation at some instant of

time t', where kiT < t' < (kl+l)T (fig. 37), at which time the amplitude of

the on-line-optimal feedback parameter vector is P_ (kl) , where
--A

k 1

p$_(kl) : _ _(i) (76)
--A i=0 -

This value is stored in a memory compartment whic.hfis associated with the

lth control situation for use as the first value of PA (k;t) the second time the
_th control situation is entered.

At t=t' the measured attitude error is z I (k l,l;t'). The second time the

_th control situation is entered the initial (wi_h ,:espect to the second entry)

measured attitude error is not zl(kl,l;t'). This is due to variations in z 1

which occur while the system is in other control situations; hence, it is

meaningless to continue eq. (73) out past k 1 or to base decisions on choices

for _(i), the second time the fth control situation is entered, on PI(kl,l;1).

[HilT(Ref. 3), in a different context of course, carries over his performance

index from one entry into thelth control situation to another. As pointed out

by Mr. Frank Noonan (NASA), there is no guarantee that Hill's procedure for

updating his feedback gains will converge, due to the discontinuities which

occur from one entry to another.]

The second time the system enters into thel th control siutation m=2 in

eq. (66), and
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Figure37. Amplitudesof On-Line-OptimalFeedbackParameterVectorDuring
First Entry into_thControlSituation

_ vk T k (j+ I)T 2
PI (k,J;2) - T f z2 (1-7__.__)l (0'1;t)dt + T _. Tk-j f _, (j,J_;t)dt

0 j=l jT

k = 0, 1 ..... k 2 (77)

It is assumed thRt whatever the instant of time the Ithcontrol situation is

re-entered is labeled as t=0. Iterations then proceed from 0 to T, T to 2T,

.... and k2T to t", where t" is the time at which the system again leaves

thelth control situation [kzT < t" < (k2+l)T ].

For 0 < t < T, P_J_ (k;t) = pXJe (0;t) = p__Jt (kl) which, of course, is
available from the preceding entry.--This is in contrast to the value chosen

• * , . . .

- " " g" g " P " g A " ) y's

identical to the algorithm discussed above for--_pdating PXJ (k;t) on the first
entry. It is worth mentioning again, that once again there is no basis for a

new decision during the interval of time T < t < 2T; hence, PXJ (l;t) =
2_1 (o;t) = E_i (kl).
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For purposes of exposition, it is assumed that eventually the system will

enter and remain in the _th control situation long enough for the attitude error

to be driven to values less than or equal to ±0. Z0 arcsec, as required. It is

assumed, for example, that this is achieved during the pth entry, for k=kp.

The amplitude of the on-line-optimal feedback parameter vector is, then,

kp

_PA _ (kp) = _. __(i) (78)

i=0

where

7r(0) = _P_J[ (kp_ 1) (79a)

and _(1) = O. (79b)

th
The feedback gain in eq. (7_is associated with the _ contrql situation;

,L[, • • ' _j_ •
henceforth, whenever the _ control situatlon is entered _ (kp) is apphed
and no further iterations are required unless, of course, PI, wnich is always

computed and monitored, exceeds 6(_). If PI > 6(_) attitude errors are

excessive and the on-line-optimal feedback parameter vector is once again

updated until attitude errors are driven to values less than or equal to
±0. 20 arcsec.

The Error-Correction Learning Algorithm is summarized in fig. 38.

Note that every 3T units of time the on-line optimizations are preceded by a

control situation check. The factor of 3, while quite arbitrary, does allow

at least two decisions to be made about the quality of the on-line-optimal

feedback parameter vector, per entry into a control situation.

In the next subsection discussions are presented on a number of topics

directly related to the Error-Correction Learning Algc.rithm.

Topics Related to the Error-Correction Learning Algorithm. --This

subsection begins with a brief summary of the timing problem, that is the

problem of when states and parameter estimates are updated, when these

estimates are sampled for use in the on-line-learning procedure and when

the control gains are updated during the on-line-learning phase. A rule for

updating the control gain-change vector z(k+l) and the associated effects on

the learning algorithm are discussed in the subsection titled "Updating the

Control Gains." The time-varying threshold, c'(k), is discussed in the

subsection titled "Threshold Functions." Finally, the possibility of and

reasons for distinguishing between on-line and off-line control situations
are discussed in the subsection titled "Control Situations. "

The Timing Problem: The relationships between the times at which esti-

mates of states and parameters are updated (using the estimator in fig. 15-2),

on-line-optima! control gains are updated, and samples of the estimated plant

parameters are taken are depicted in fig. 39. The estimates of states and
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Timing Relationships

parameters are updated every T s units of time, where T s is some fractional
multiple of T, the decision interval. The estimated plant parameters are
sampled every 3T.

The decision interval should be chosen small enough, that

A I ! ^II__pA (n+3)TJ(n+3)T ---PA (nTInT)ll < M (80)
a a

for n=0,3,6 .... where M is related to the size of a square control situation
(fig. 8b). This means that the on-line optimization interval, 3T, should not
be so large that on-line optimizations are assumed to be in progress for one
control situation when in reality they are in progress for another (due to the
system moving out of the first control situation, during 3T, by an appreciable
amount). Eq. (80) provides a means for bounding the decision interval, from
abov

Updating the Control Gains: Numerous possibilities exist for updating the
on-line-optimal feedback parameter vector. The procedure described below

is intimately connected with the error-correction.technique. Two other pro-
cedures are described in Appendices E and F. Both of these procedures
result in reinforcement-type learning algorithms in that the feedback gains
are updated not only when the overall performance deteriorates but also when
performance improves. The stochastic automata approach, described in
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Appendix E, while interesting, does not appear to be applicable to this
problem. The adaptive, random-optimization approach, described in
Appendix F, m_y be applicable; however, time did not permit the algorithm
described in that appendix to be simulated.

The rest of this subsection is concerned with a specific rule for updating
the control gain-change vector E(k+l) in eq. (71), since

PA J_(k+l) = P_i(k) + __{k+1) k=l,2 ..... (81)

which follows from eq. (71). It is not necessary to obtain E(0) and __(1),
since they are both known a priori, as discussed previously in this section
Iecs. _79a} and (79b}1.

Here E(k+ 1 ) is updated according to the following rule:

z(k+l) = [_]_{k)
k=l, Z.... (SZ)

y(k) is a decision function which takes on the values of zero or unity
according to the" following rule:

y(k)

0 if PI(k,_;m) > PI(k-l,_;m) - d(k)

1 if PI(k,f;m) i PI(k-l,l;m) - e'(k)

(83)

for k=l, 2 .....

f(T) is a weighting function, defined as

fiT)

__(k) is a vector which is proportional to P_{k); that is,

[Pl(k,' ;m)- i_11

_i(k)=Clk_l(k ) sgn [ k_l(k)__ i ]

= 1 + [Number of successive intervals for which y{k) = 1] (84)

i=l, 2, 3 (85)

126



where:

C1 is a proportionality constant which is a design parameter,*

"_i is the most recent value of k_ _ that is different from k_l(k), and

P_ is the last measured value of PI for which k_l=_ i (i=!, Z, 3)

Some observations are in order at this point.

When y(k) is unity __(k+l) =0, as required in the Error-Correction
Learning Algorithm. When this case occurs it is not necessary to compute

f(T) and __ (k); hence, these computations are bypassed when y(k) = 1.

f(T) is a weighting function that causes __ (k+ 1) to be updated by a smaller
amount the longer the overall performance of the system continues to
improve. In the worst case, whena choice for _(k+l) does not lead to
immediately improved performance, f(T) is unity.

may be viewed as a pseudo-gradient. Directional information is
provided by the argument of the signurn function. The numerator of this
argument is negative if the performance for the present control choice is
better than the performance for the preceding control choice; it is positive
if the performance for the present control choice is worse than the
performance for the.preceding choice. Magnitude information is provided

b_.the product Clk_l(k) which is interpreted as a fractional change in
n " .k i (k). Choices for C1 are discussed i the subsection titled Experiment A"

The nature of the on-line optimization procedure is deuicted in fig. 40.

for one component of PA (k). In connection with k i and PI, the following
assun.ptions are mad_

1. k i is initially equal to zero (i=l, 2, 3),

2. PI is initially equal to PI(0,{;m) when a control situation is entered
for the first time or is re-entered.

Observe, in fig. 40, that eq. (82) provides a capability for either

increasing or decreasing the preceding control choice. Four changes in
kT_(k) are illustrated in that figure (indicated by numbers), one

each at k = 2, 3, _ and 10. In connection with these (and other) changes in
a component of P_(k) a more detailed discussion of the rule for updating
k_from the ktli_to the (k+l) st iteration is now in order.

*In the most general case, C 1 would be different for each component of_.
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kT_(k) changes only when y(k) = 0 in eq. (82), in which case it follows,

from eqs. (81), (82), and(85), that

NOW,

k=l, 2 .....

y(k) = 0 in either of the following ways:

(86)

or

1.

2.

PI(k,f;m) > PI(k-l,f;m) - ¢'{k) and

PI(k,f;m) < PI(k- l,_;m)

PI(k,f;m) > PI(k-l,f;m) - d(k) and

PI(k,f;m) > Pl(k- l,f;m)

(87)

(88)

In eq. (87), PI(k,_;m) is going in the proper direction but hasn't gone far

enough during one iteration. In eq. (88), on the other hand, PI(k,_;m) is

going in the wrong direction. In order to distinguish between the two

modes in eqs. (87)and(88), let

Pl(k,_;m)- P_ = gi (89)

where

i = i if y(k) = 0 as in eq. {87)

i = 2 if y(k) = 0 as in eq. (88)

From eqs. (87)and(88), it follows that

gl < 0 and g2 > 0 (90)

In order to distinguish between the cases when k_(k) - E 1.

is positive or negative, let

in eq. (86),

{91)
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where

Upon substitution of eqs. (91) and (89) into eq. (86)the latter equationbecomes

[k_'J_(k+l) = 1 - f_sgn klJt(k ) (9Z)

k=l, Z,....

The behavior of k_l(k+l)* is tabulated below for i, j = 1, 2. Table VII was

obtained by analyzing eq. (9Z) for all combinations of i and j. It provides

the starting point in our inquiry as to how k] _1 is updated from one iteration
to the next.

TABLE VII

SUMMARY OF BEHAVIOR OF k_l(k+l)

1

(PI improved, but not sufficiently)

k_l(k+l) increases in the

direction of the preceding

valueof
which tended to improve PI

k_(k+l) decreases in the

direction of the preceding

value of k_ _, ky(k),

which tended to improve PI

(PIWorse)

k_'][(k+ 1) reverses direction

and becomes smaller than

k_(k)

k_(k+l) reverses direction

an_ becomes larger than
×V(k)

The transition in k_ _ from k_ _ (k) to k_(k+l) may be conveniently viewed

as the transition from one of four states in a finite state machine. The four

states are (i,j) = (1, 1), (1, Z), (Z, 1), and (2, 2). The possible transitions are

depicted in fig. 41 which was obtained by analyzing Table VII for all com-

binations of (i, j).
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From fig. 41, one observes that six different limit cycles may occur
during the updating of X_. The first is the self-loop at the node associated
with t,_e state (1, 1). In this first case k_l continually increases. The

second limit cycle appears as a self-loop at node (2, 1). In this second case

k; _ continually decreases. The third limit cycle is associated with thse
transitions from state (1,2) to (Z, 2-) to (1,2) etc. In this third case kl_
oscillates in magnitude. The fourth limit cycle is associated with the tran-
sitions from state (1, 1) to (1,2), to (2,2), to (1, 1), etc. Here, k?_decreases
during the transition from (1, 1) to (1, 2) but increases during the _ransitions
from (1, 2) to(Z, 2), and (2, 2) to (1, 1). The fifth limit cycle is associated
with the transitions from state (2,1) to (Z,Z), to (1,Z) to (3,1), etc. Over

this fifth limit cycle k_ increases once and decreases twice. The sixth
limit cycle is associated with the transitions from state (1, 1) to (1,Z) to
(Z,1) to (Z,Z) to (1,1), etc. Observe, also, that it is impossible to have
transitions from certain states to others [(1,1) to (Z,l), for example] and

that no self-loops are possible at states (l,Z) and (2,2).

The above limit cycles were observed during the simulations. The
interesting point to be made here is that using the transition diagram concept
all limit cycles can be predicted ahead of time.

Threshold function, ¢'(k): In this paragraph the time-varying nature of
the threshold function c f in eq. (83) is discussed. First, it is demonstrated
that ,' should be time-varying; hence, _1_ ¢'(k). Then, an explicit
expression for _'(k) is discussed.

L

s

S

"e(k 1), k = 0,1,...Figure 41. Transition Diagram for >,: _ (k) to x : +
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The discussion below, in connection with the time-varying nature of c',

is presented in the context of a straight average S for'_-I. It has been

previously established that when _= 1 - 1/(k+2) the average in eq. (66)

reduces to a straight average. In this case, it is straightforward to show
that

where

Pl(k+l,_;m) = (k+l) Pl(k,_;m) + 1 --
(k+2) (k+2)--_ PI(k+ 1,1;m) (93)

k=0,1 ....

] m

PI(0,i;m) = T PI(0, i;m). (94)

The inequality

PI(k+l,J_;m)-<PI(k,i;m) -c' k = O, 1,... (95)

which is used in the decisions for updating the control gain-change vector,

reduces to

PI(k+l,i;m) _PI(k,i;m) - (k+2)¢'
T

(96)

k=0,1,...

when eq. (93) is substituted into it. If the on-line-learning algorithm is

functioning properly, PI(k,l;m) will be getting smaller as k gets larger;

however, (k+2)e' will be getting larger as kincreases. This means that unless

_' is a function of k there will be values of k for which eq. (96) will not be

satisfied, since PI must remain positive. Actually, if k = kmax.iS the

largest positive integer (or zero) for which the right-hand side of eq. (96) is

positive then as PI(k,l;m) --_ ¢' kmax --_0. It must be concluded, therefore,

that e' must be functionally dependent upon k.

Various rules were tried for e'(k), such as e'/(k+2), an exponential rule

and, finally, the rule

e'(k) = C 2 PI(k,i;m) k = 0, 1 ..... (97)

*The generalization to the linear reinforcement average is straightforward.

The argument is somewhat different, however, than the one presented

below for straight averaging.
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It was found (through simulations) that the rule _'/(k+2) was too sensitive;
i. e. , using this threshold the feedback parameter vector was continually
changed due to the fact )hat for a specific value of k E'/(k+2) was usually
too big a change to be required of PI(k,_;m). The exponential rule, on the
other hand, was not sensitive enough; ('(k) got very small so quickly that
extremely small changes in PI(k,1;m)were considered successful. The

constant C Z in eq. (97) is a design parameter and may be interpreted as a
fractional change in PI(k,l;m). Choices for C 2 are discussed in a
subsequent subsection.

Control Situations: Generally, two types of control situations are
distinguished: off-line or nominal control situations, which are based upon

a priori ranges for the plant parameters (as in Section 2); and on-line
control situations, which are based upon the actual on-line trajectories
taken by the parameters in the augmented plant parameter space. In certain
applications it may even be expeditious to reorganize the nominal control
situations into on-line control situations which are geometrically different
from the nominal situations.

Suppose, for example, a(t) and a(t) vary as shown in fig 42a. In this
example the nominal control situations might be restructured as in fig. 4Zb
in order to make use of the on-line trajectory information and, also, to
permit finer refinements in the control gains to be made than might have
been possible for the nominal control situations. While it is relatively
straightforward to mechanize the construction of circular or hyperspherical
regions (it is not an easy matter to mechanize hypersquares) on-line, it is

a a
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Figure 42. An Hypothetical Plant Parameter Trajectory in Relation to (a) Nominal Control

Situations and (b) On-Line Control Situations
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not an easy matter to construct hyperspherical control situations in the

sense of the control situation definition in Section 2. For the above reason

and, also, because it is doubtful that distinct trajectories like the one in

fig. 42a will occur in the present application, the nominal control situations

designed in Section 2 are also used as on-line control situations. Distinct

trajectories are unlikely because a(t)varies rather slowly.

Simulation Studies

Several experiments were performed in order to evaluate the Error-

Correction Learning Algorithm and to determine suitable values for some

of the design parameters which are utilized by the algorithm. These

parameters are ¥, C., and C 2 which are associated with the reinforcement1
averaging [eq. (63)], control gain-changing [eq. (85)] and threshold setting
I'_n. tqTll l"p _n_rf_vmlv.

Despite the fact that the experiments described below are of the simplest

variety, difficulties were experienced. These difficulties are similar to

those usually experienced during the solution of a multivariable optimization

problem with an heuristic algorithm. They are compounded here by the
numerous design parameters which enter into the algorithm, and by the

dynamic nature of the on-line optimization problem.

The following three types of experiments were performed:

I. Experiment A--Correct nominal controls and (on-line) pl = 0.96 _

2. Experiment B--Incorrect nominal controls and (on-line) pl = 0. 96

3. Experiment C--Correct nominal controls and (on-line)pl _ 0.96

The purpose of Experiment A was twofold. First, the experiment checked

the error-correction algorithm to see if the algorithm updated the control

gains unnecessarily; and, second, it investigated different choices for

the design parameters _, C 1 and C 2.

E:_Deriment B may be interpreted in either of the following ways. First,

it may be viewed as a test of the on-line learning procedure as a design

tool. Second it may be viewed as a test of the error-correction algorithm to

properly update the control gains in the face of plant parameter errors, if

such errors degrade attitude errors.

In Experiment C on-line learning was used to update the control gains

in order to compensate for erroneous a priori information about disturbance

torques.

• In Experiments A and B the on-line p = off-line p. ; in Experiment C, on

the other hand, the actual disturbanceltorques diffe/red from those assumed

during the nominal controller design.
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In each experiment the following assumptions were made:

1. The actual disturbance, ._(t), is a first-order Markov process. In
Experiments A and B _(t) = _(t); however, _(t) _ _(t) in Experi-

ment C, the difference being that _ # 0-_ [see Assumption 3, below,
and Appendix C, ].

There is no measurement noise and all states are observable; hence,

the loop is closed around the plant and -x (tit) = x(t) and z(t) = xa(t )
--a

in fig. 3.

o The augmented plant parameters are completely known because

the parameters are generated. Hence, f_ A (tit) = P Aa(t) in fig.

In addition, a (t) and o(t) are fixed at constant values for each

Experiment.

.

A simplified version of fig. 3, one that describes these experiments, is
shown below in fig. 43. This system was simulated on the IBM 7094.

A total of 51 different runs were performed: 7 for Experiment A, 34 for

Experiment B, and 10 for Experiment C. The following values of a and

were used in one or more of these runs: (a,_) = (0.40, -0.80), (0, -0.40),

(-0. 30, -0. 40) and (-0. 30, -0.80). For a = 0.40, 0, and -0.30 the open-

loop system is stable, has a double pole at the origin, and is unstable,

respectively. Adecisionintervalequalto0.05wasusedinevery run (time did

not permit the decision time to be considered as a design parameter).

Experimental results for each experiment are presented and discussed next.

Experiment A. --During this experiment, different rules for the

threshold function _'(k) were investigated. Discussions on three of these

appeared previously in Section 4. The final choice for _'(k) is given

in eq. (97). This rule was simulated for different values of C 2 [0. 05,

0. 10, and 0. 20], which was finally set at 0.20; hence, it was required that

the (k+l) st sub-goal performance index, PI(k+l,_;m), be 20 percent less

than PI(k,_;m). Within this experiment, this 20 percent rule worked well.

It did not work so well, however, in the other experiments (see subsection

titled "Experiment C").

Different values for the design parameter C 1 in eq. (85) were investigated
in relation to the rate "at which xl(t ) was driven less than or equal to 0. 30

arcsec. Values of C 1 = 0. 05, 0. 10, and 0.20 were tried. The final
choice for C1 was 0. 10; hence, the amplitude of the on-line-optimal feedback

parameter vector was updated by 10 percent of its preceding value.

Different values for the learning parameter, "t, in the linear reinforce-
ment ".verage were tried (_= 0. 10, 0.20, 0.40 and 0. 60). A value of

Y = 0. 10 was finally chosen.

The choice for a suitable value of _is complicated by a paradox, which

became apparent after a few runs. Suppose, for example, that the system's

performance is___initially poor; that is to say, attitude error is increasing and

PI(k+l,_;m) > PI(k,_;m) for k = 0 ..... K 1. Assume next that the system's

135



_ x r-T"_
- 1 x_

r

r7,_
X _ = Z _l_LI I_

GOAL CIRCUIT

I

GENERATE PA(_)

a(t) AND a (t)

[

I
[

r

I

NOMINAL

GAINS

r

I

ON-LINE LEARNING
NETWORK

Figure 43. On-Line-Learning Control System for Experiments A, B, and C

136



performance improves during the (KI+I) st time interval; i. e., P-[(Kl+l,J;m)
<P-I(KI,f ;m). It would certainly not seem desirable to change l_.lat this
point; however, if _/is too large (usually, > 0. Z0) the past poor-p_rformance
is too heavily weighted and, as a result

PI(KI+I,I;m) g PI(Kl,i;m) - _'(KI).

Therefore p_l is once again changed. In this situation, a small value for _, is
desirable so that when the system's performance goes from bad to good the
present is weighted more heavily than the past. Assume, next, that the sys-
tem performs well for k = KI+I ..... KZ, which means that _rr(k+l, C;m)
<_(k,f;m) for k = KI+I ..... KZ. Now, since xl(t ) is a stochastic process
it may easily occur that, for KzT<t<(Kz+I)T, Xl-(t) is larger than it was for
(KZ-I)T<t<KzT and is just larger than 4-0.20 arcsec; hence, l_(Kz+l,_;m)

>l_I(Kz,f;m) which means that the control gains must be changed. With a
small value of _, the degraded performance is weighted much heavier than all

good previous performance, even though the system was performing well dur-
ing many iterations. In this situation a larger value for 9' is desirable. Obvi-
ously, unless _/ is adaptive, the requirements for small and large _/ can not
be satisfied simultaneously.

Experiment B. --During this experiment the system was initially controlled
by an incorrect nominal controller (the nominal controller designed in
Section 2 is the correct nominal con:roller). The incorrect nominal controls

were obtained in two ways. In one approach, an incorrect value for the

weighting function, _, was specified during the computation of the nominalgain__, _, and_3"Sincethethr_eg_insarefunctionsofp [eq_.(3)to
(5)], each gain was incorrectly specified in this first approach. In another
approach only k_1 was specified incorrectly; it was chosen different enough
from the true value that attitude errors exceeded ±0. Z0 arcsec.

Regardless of how poorly p or kil were chosen, the performance of the
system improved, initially; that is attitude errors decreased, initially. In
these cases, however, a limit cycle larger in magnitude than 0. Z0 arc-

sec occured for xl(t); hence, on-line learning was required to reduce the
magnitude of the Fxmit cycle to within 0. Z0 arcsec.

After a number of unsuccessful runs, during which the three components

of pX' were updatedsimultaneously, it wa, decidedto hold _! and _ at the
inil'_al values and to update k_1 only. The justification for this stems in part
from the result_ of the nominal control design. There (Table III) it is
observed that )_ is most sensitive to a and ,_. As soon as this approach_was

•Varying k 1, while holding k z and k 3 fixed, represents an incomplete
relaxation-method approach to the solution of the on-line optimization problem.
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adopted the error-correction algorithm functioned as expected and many

successful runs were obtained. The details for one run are discussed next.

in fig. 44 the magnitude of the attitude error is depicted when a = -0. 30

and a= -0.80 for two conditions. The dashed curve depicts the behavior of

Ixl(t)l under the action of the correct nominal controller [from Table III and

fig. i0 k_ 8 _ 2-84. 55, k 18 _ 23. 86 and k 18 _ 999. 78], The solid curve depicts

ing, it should be mentioned that the random sequences used in generating the

disturbance torque were identical in both cases; hence, the system was

subjected to the same random disturbances in both cases. This sequence

was also utilized in the learning runs and was available by virtue of the way

the sequence was generated and programmed for the 7094. The disturbance

state, which remains unchanged during learning, since it is an uncontrollable

c_rv_e _ fig. 45. It must be observed that correlation between the large

values of I_ (t)l and the values of Ixl(t)Ithat are greater than 0. Z0 arcsec

exists (fig. 44).

The behavior of Ixl(t)l during on-line learning is depicted in fig. 45

(solid curve). In addition, the behavior of k_(t) is shown directly above the

plot of IXl(t)m. The time scales are the same for both plots. Observe that

there was always a lag of at least 0. 05 units of time before the learning
controller sensed that the attitude errors exceeded ±0. Z0 arcsec. This is as

expected, since the decision time T = 0.05. It must also be observed, that

k_(t) was updated only when )Xll > 0. Z0 arcsec, as postulated (the stopping
rule which is embodied in the theorem presented in the subsection entitled

"On-Line Cost Functions" was used to ensure this behavior); hence, the

algorithm was functioning in an error-correcting mode, as designed.

At first sight, it does not appear as though the system's performance

was improved during on-line learning. Looking closer at mxl(t)o in fig. 45

and fig. 44 one notes, however, that the behavior of Ixl(t)) in the on-line

x (t) when k =learning case is superior to I 1 I 1 I00. For example, the time

interval during which mxl(t)) > o.zo arcsec is always smaller in the on-line

learning situation. This is because of the attempted improvements (this may

not always be the case however). Note also that k'[(t) is moved in the proper

direction by the algorithm, although there are many detours, the most notable
of which occurred at the end of the run. These "detours" and other move-

ments of k_(t) corroberate the Limit cycles discussed in connection with

fig. 41. For example, the sideward movement for "4. Z<t < 4.5 is indicative

of the Limit cycle from state (i, Z) to (2`,Z) to (l,Z), etc. The strange

behavior for i0. 35 < t < i0.5 is predictable and is indicative of the self-loop

limit cycle at state (Z, i).

It must also be pointed out, that for 7. 65 < t < 7. 75 the attitude error
exceeds 0. Z0 arcsec, but for only a very short time interval. The

algorithm ignores the good performance of the system over the preceding

35 iteration intervals (T = 0.05) and changes k_(t). Fortunately, the change

was made in the proper direction and the attitude error was swiftly contained.
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If a larger value of y had been used, one which took into account the

satisfactory _erformance over the 35 preceding iteration intervals the
changes in kl(t) might not have been made.because they might not have been
necessary (note thatl_(t) I is decreasing). _

Experiment C. --During this experiment the system was initially
controlled by the nominal controller, which was designed under the a priori
assumption that the on-line Pr(Ifl---10-4 lb-ft}= 0.96. The system was
disturbed on-line, however, by larger disturbances; that is to say, during

this experiment Pm _ 0.96. The nominal controls are correct when pl = 0.96.
They are incorrect when PF _ 0.96; hence, the need for on-line learning
during the present experirr_ent.

It was observed that, for the system under the control of the nominal

controller, attitude errors are contained when the on-line p_was as low as

0.50. Runs were made when Pl = 0. 10 and 0.40. Some were successful,
others were not. The results from one of the runs, where a = 0.40 and

= -0.80, are depicted in fig. 46. Once again, observe the correlation

between large values of It (t)l and large value of Ixl(t) I. Although only
three changes in k_(t) are necessary in order to 'maintain Ixl(t)[ _ 0.20 arcsec
more changes may be required should attitude errors again exceed
+0.20 arcsec for values of time greater than t = 3.6.

In some of the runs, Cz, in the rule for _'(k), was observed to be too
large. Generally, too large a threshold has a deleterious effect on k_(t).
For example (Refer to Table VIIandfig. 41), if the system is initially in
states (1, 2), or (2, 2), and moves to state (2, 1) [in which case k_(t)
decreases] it is probable, due to too large a threshold, that it will remain in
that state for many iterations. Generally, k_(t) should increase if attitu_le
errors are to be reduced [eq. (C. 23), for example]; however, k_(t) decreases
for as long as the system remains in state (2, 1). This condition represents,
in effect, an instability in the learning algorithm. Usually, though, it is
not a permanent instability, since the performance of the system deteriorates
rapidly as k_(t) becomes smaller. Eventually the system moves out of

state (2, 1) and k_(t) begins to increase.

Summary

An on-line learning procedure has been discussed and simulated. It
is termed error-correcting since it leads to control-gain changes only when
the present performance is worse than the preceding performance. The
Error-Correction Learning Algorithm, as the learning procedure is called,
has been discussed in detail. Although no mathematical proof for its con-
vergence exists, it is felt that the algorithm should update the control gains
in the proper directions. This was verified, in part, during the experiments
which were performed. In addition, it was demonstrated, through the use

• There is a relationship between larger values of y and the thresho!d ct(k).
For example, if C 2 = 0. Z0, then increasing ¥ may lead to larger values of PI

for which a 20 percent reduction in the sub-goal performance index during one
iteration interval may no longer be practical. The dependence of _(k) on
Yrequires further study.
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of a state transition diagram, that six limit cycles may occur during the
updating of the control gains. These limit cycles were predicted and, in
addition, each was observed experimentally.

The simulation studies were for a simplified system, one in which the
loop was closed around the plant and not around the state estimator derived

in Section 3. The reason for this is that the study described in this section

was in progress in conjunction with the study in the preceding section. Time

did not permit the nominal controller to be redesigned in order to compensate

for estimation errors; hence the simulation in the present section could not
be performed for the system with the loop closed around the filter. In the

simplified system no measurement noise was assumed and, for that case,
a theorem which relates the overall performance index to the containment of

attitude errors over an interval of time was proved. The extension of the

theorem to the case when measurement noise is present is possible if it
is assumed that the system is discrete--as it is when it is simulated
digitally. The white measurement noise becomes a Gaussian random

sequence and is mathematically tractable in the inequality analysis involved
in the proof of the more general theorem.

Results from the experiments demonstrate that on-line learning has the
potential for improving a system's performance, on-line. Much more work

needs to be done, however, in connection with the algorithm used in the on-
line learning procedure before a point is reached where more significant
experiments can be considered. .An example of tJnese experiments is one
where a and ¢_ are time-varying and the loop is closed around the estimator.
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Section 5

CONC LUSIONS

A preliminary design of a fine-attitude, single-axis controller for an
almost cylindrically symmetrical spacecraft, operating in a partially known

environment, has been performed. The design proceeded in two stages.

First, a no_ninal controller was designed. This design incorporated all
available information about the plant and the plant environment. If the plant
and the on-line environment are as assumed off-line, the on-line attitude
errors are contained to within ±0. 2.0 arcsec, (as required). The nomi-

nal controller is nominal with respect to the overall on-line controller, which
was provided with a capability for updating the nominal controller, when and
if updating is necessary.

The on-line controller designed during the second stage is an on-line-
learning controller. This controller utilizes the system's past experience in
attempting to improve the system's present performance. Learning is accom-
plished, for the most part, through inclusion of a memory into the on-line
controller.

The nominal control system serves two purposes in relation to the on-line-

learning control system. First, it is used as a system with which the per-
formance of the on-line-learning control system may be compared; and a
comparison of this type is important if the on-line-learning control system is
to be judged fairly. Second, simulations of the system under the action of the
nominal controller point up the reasons, if any, for wanting to include an
on-line learning capability. Hence, the nominal controller not only serves to
provide the justifications for on-line learning, but also provides a reference
for statements made about the performance of the on-line-learning control
system.

The nominal controller, which is a linear combination of estimated

states, is an adaptive controller, in that feedback gains are changed when
plant p :ameters change. On-line estimates of the §tates and time-varying
parameters (two) are required, in order to implement this controller.

An augmented Kalman filter was investigated for obtaining combined,
on-line estimates of the states and parameters. Due to the insensitivity of
the combined estimator to plant parameter variations (±100%), satisfactory
estimates of these parameters were not obtained, although good estimates
were obtained for the states.

The design of the gains for the nominal controller proceeded in three
steps: (1) for fixed values of plant parameters, nominal gains were obtained
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using stochastic optimal-control theory; (2) for specific ranges of the plant

parameters, which were denoted control situations, nominal gains were

obtained using the results from Step 1 and sensitivity analyses; and (3) for the

gains designed in Step 2, simulations were performed in order to observe the

effects of some of the assumptions made during the design. A continuation of

this procedure to higher-order systems, using off-line training, is elaborated

upon in Appendix D.

For the system under the control of the nominal controller, the following
was observed:

(l) Disturbance levels greater than those anticipated during the design

of the nominal controller may cause attitude errors to exceed

±0. Z0 aresec;

(3)

A*..'*.._....... -'_ J .... _--_ I..__._............ d ........ J ..... _ r_i&glli

tude due to state-estimation errors, when disturbance torques are

of the order of magnitude of 10-4 ib-ft;

If disturbance torques are only of the order of magnitude of 10-6 ib-ft,

attitude error will remain less than±O, gO arcseq, e_en though

estimation errors occur (provided measurementrnoise level is low};

(4) Large measurement-noise levels degrade attitude error further, due

to larger state-estimation errors;

(5) Neither the time-varying nature of the plant parameters, nor param-

eter mismatches (at least as large as ±15%), degrade attitude error

further.

Once the effects of state-estimation error, measurement noise and

parameter mismatch (or parameter-estimation error) are observed, compen-

sation should be possible through the modification of the nominal controller.

On-line learning is not required for the compensation of these effects, since

the effects are known a priori (before the spacecraft is in orbit).

Different disturbance levels, on the other hand, may necessitate on-line

corrections of the nominal controls. One approach is to update the nominal

gains only when the system's performance becomes unacceptable (attitude

errors exceed±0. 20 arcsec), or if the performance deteriorates. A

second approach is to update the nominal gains regardless of whether the sys-

tem's performance improves or worsens. The first approach is referred to as

error-correcting, and the second as reinforcing.

Two reinforcement, on-line optimization techniques were formulated for

this study. The first utilizes concepts from stochastic automata theory, while

the second utilizes concepts from random optimization theory. The stochastic

automata approach, while interesting, does not appear to be applicable to the

fine attitude control problem. This is because of the dynamic nature of this

optimization problem, the time-varying behavior of the system and the diffi-

culty in finding a meaningful stationary expected value function for the problem.
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The adaptive, random-optimization approach appears promising; however, it
remains to be tested (through simulations) in the context of the fine-attitude
control problem. Adaptive, random optimization has, however, been used
with success at Douglas in the context of a 58-dimensional stationary, cal-
culus, hill-climbing problem; excellent convergence properties have been
observed.

An error-correction technique was formulated and tested for this prob-
lem. Although no mathematical proof for the techniques convergence exists,
it is felt that the technique should update the control gains in the proper direc-
tions. "l'his was verified, in part, in a number of experiments. In addition,
six limit cycles in the control gains were predicted_ using a state transition

diagram. Each limit cycle was observed experimentally. Unfortunately,
time did not permit a complete study of the error-correction technique.

Attention should be devoted to optimum choices for the many design
parameters which are a part of the Error-Correction Learning Algorithm;
or, the Algorithm should be modified, to reduce the numbers of these param-
eters. The application of the Algorithm to the multivariable optimization
problem requires further investigation. Finally, on-line cost functions which

ensure desirable relative stability properties should be developed. Using the
present on-line cost functions, one is only able to achieve a form of asymp-
totic stability for attitude errors (to a random limit cycle).

Results from the on-line learning experiments demonstrated that on-line
learning has the potential for improving a system's performance. The on-line-

learning controller appears, however, to be very complex, requiring an
on-board digital computer in order to mechanize the on-line-learning algo-
rithm. No doubt, the tradeoffs between an on-line-learning control system
and an over-designed nominal controller (overdesigned, perhaps, by assuming
I_(t) l _< 10-3 or 10 -Z lb-ft instead of 10-4 lb-ft) should be investigated. The
overdesigned nominal controller would, for example, use more control effort
but would be less complex than the on-line-learning control system. The
learning control system, on the other hand, would be able to cope with the
unexpected.

A final remark about what a learning control system can and cannot be

expected to do is in order. Much confusion exists in the minds of engineers

on this point. This study adopted the following ground rule for on-line learn-

ing control systems. Ground Rule: An on-line-learning controller must be
able to satisfactorily correct any degradation in performance that could have

been treated satisfactorily had its cause been anticipated.

At the present state-of-technology in learning control systems, however,

the supernatural should not be expected from these systems. For example,

if an inertia wheel falls apart it should not be expected that present learning
control systems learn how to repair the wheel or learn how to function without

the wheel. On-line-learning control systems are only as good as the on-line

learning strategies. These strategies are, at present, decided upon by the

control system engineer and are, for the most part still in the very early
stages of development.
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Appendix A

SYSTEM DYNAMICS

The equations of motion for a satellite in Earth or Mars orbit are
presented in this section. It is assumed that fine attitude control of the
satellite is required, as in the case, for example, of a pair of laser com-
munication satellites; the satellite telescopes must be pointed very accurately
in order to maintain the communication links between the satellites (fig. A-I).

Before presenting the equations of motion for the satellite, a dis-
tinction must be made between coarse and fine attitude control and fine-

pointing control. These distinctions will provide the proper frame of
reference for the specific problem discussed in this document.

By course attitude control is meant, that mode of control which
brings attitude errors to within +M arcsec (for example, 80 arcsec).
Fine attitude control (fig. A-Z) refers to that mode of control which
brings attitude errors from within ±M arcsec to within ±e arcsec
(for example, 0.2 arcsec for a laser communication satellite). Once
fine attitude control is achieved, that mode of control which points the
telescope is fine-pointing .control; thus, unless attitude errors can first
be maintained less than or equal to ±_ there is no hope of pointing the
telescope properly. In this study it has been assumed that these modes
of control are distinct.

Equations of Motion

The equations of motion for a satellite are derived in ref.
following assumptions are made in this document:

(1)

(z)

(3)

A1. The

Attitude error perturbations are small.

All aerodynamic and incident radiation torques except for torques
due to attitude, changes about the same axis are lumped into per-
turbation tor_lue terms.

Gravity torque contributions of planetary oblateness and higher-
order potential terms are lumped into perturbation torque terms.
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(4') All reference axis angular velocities are neglected*.

(5) Linear perturbation motions (translation-rotation coupling) are
neglected.

*Reference axis angular velocities are mainly due to velocity aberration of
the distant source. The maximum angular velocities associated with this are

given by (_O)max = (K/c)_ 2 where c is the speed of light. Numerical values
for (¢O)n_a x for four cases are tabulated below, and are seen to be quite
small from the point of view of inertial coupling. Reference axis angular
velocities due to parallax should be entirely negligible.

Central _Jody Orbital Altitude, nmi (_O)max, rad/sec.

Earth

Earth

Mars

Mars

100

1% 300 (synchronous)

100

1,000

0.0233 x 10 -6

0.000717 x 10-6

0.00878 x 10 -6

0.00442 x 10 -6
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(6) Reference axes are at arbitrary inclinations to orbit axes, but are
fixed in inertial space.

(7) Only moving parts are three axially symmetric inertia wheels
rotating on axes fixed to the vehicle.

(8) Each wheel axis is aligned with a vehicle principal axis {defined
on the composite vehicle, including wheels).

(9) Inertia wheels are stopped when attitude errors are all zero.

(10) Satellite is cylindrically symmetrical.

(11) Control is proportional to the system's state variables.

These assumptions permit us to linearize the equations of motion, lump
all perturbation disturbance torques into a single term, and decouple the
equation of motion for one of the three body axes {fig. A-I) from the com-
plete set of equations.

The equations of motion can be shown to reduce to the following set:

d 2_1 + c44(t)_l(t) + c45(t)_2(t) + c46(t)_3(t) = _ C 1 d B ¢bl(t) + 6BLI(t)
I 1 dt 2

d2_2 + 54(t)_,l(t) + c55(t)_2(t) + c56(t)_3(t) C 2 d B _2(t) + 5BL2(t)
Ig dt Z

13 d2_3 + c64(t)_l(t) + c65(t)_g(t) + c66(t)_3(t) = _ C 3 d B d03(t) + 6BL3(t)

dt z

(A1)

The nomenclature used in eq. (A1) is that found in ref. A1 and is defined
in the list of symbols at the beginning of this report. In addition, the

parameters c44(t ), c45(t) ..... and c66(t) are tabulated in table A-I.

For notational convenience, eq. (A1) is rewritten as

_l(t) + al(t)_l(t) + a2(t)_2(t) + a3(t)_3(t) = bld B _l(t) + d 1 fl(t)

"_z(t) + a4(t)_l(t) + a5(t)_z(t) + a6(t)_3(t) = bgd B _2(t) + d2_z(t)

_3(t )+ a7(t )_l(t ) + as(t)_2(t ) + a9(t)_3(t ) = b3d B ¢0 3(t) + d313(t)
(AZ)

t
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TABLE A-I

PARA_METERS IN EQUATION (AI)

Symbol Formula*

c44(t)

c55(t)

c66(t)

c45(t)

c56(t)

c64 (t)

c46 (t)

c54(t)

c65(t)

_-- 3K 2.
all + (iZ _ I3)-_c°sZT]l(t) cos _z(t)

aLz 3K Isisz 2 cosZrlz(t)]-a_--z + (I3 - II)-_ nz(t) - cos _]l(t)

8L3 3K [sin 2 2 2-a_---_ + (II - Iz)-_ Ql(t) cos Qz(t) - sin _]2(t)]

3K
(I3 - I2) -_ sin _]l(t) sin T]z(t) cos T]z(t)

3K Z
(II - I3) -_ sin T]l(t) cos T]l(t) cos _]z(t)

3K
(I z - I 1)-_cos ql(t) sin rIz(t ) cos qz(t)

3K
(I Z - 13)-_cos _]l(t) sin Bz(t ) cos l]z(t )

3K
(I 3 - I 1) _ sin Bl(t ) sin _2(t) cos Bz(t )

3K Z
- (II - I2)-_ sin rll(t) cos T]l(t) cos rlz(t)

are aerodynamic and incident radiation torque derivatives which can
be pre-estimated.

whe re

l i(t) = 6BLi(t ) i = I, 2, 3 (A3)

and the parameters a.(t) ..... ao(t), b], b), bx, d 1, d), and d_ are tabulated
in table A-II. Observle that for _ specffic _¢ehiEle c'onfi_guration_ ranges on

al(t) ..... and a9(t ) can be obtained from the expressions for these quantities
in table A-II.
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TABLE A-II

PARAMETERS IN EQUATION (A2)

Symbol Formula Symbol Formula

al(t)

az(t)

a3(t)

a4(t)

a5(t)

a0(t)

a7(t)

a8(t)

c44(t)/I1

c45(t)/I1

c46(t)/I 1

c54(t)/IZ

c55(t)/Iz

c56(t)/I Z

c64(t)/13

c65(t)/I3

ag(t)

b 1

b 2

b 3

d 1

d 2

d 3

c66(t)/I 3

-C1/ll

-C_-/Iz

-c3/I 3

i/I 1

I/Iz

i/I3

The control variables u, (t), uz(t), and ua(t) are taken as the relative (to the
vehicle) angular accelerations of the three inertia wheels. This lmph s the
existence of tight closed-loop control of the relative angular accelerations
of the wheels.

ul(t ) = d B _l(t)

uz(t) = d B _Z(t)

u3(t) = d B _o3(t) (A4)

Next, note from tables A-I and A-II and eq. (A1) that if I1 = I Z, I2 = I3 or

.I 1 = 13 (see assumption 10) then one of the axes (_3, _1 and _Z' respectively)
is completely uncoupled from the remaining axes. In these cases, instead
of investigating the control of a completely coupled sixth-order system, the
control of a second-order system and a coupled fourth-order system can be

investigated. For example, if I 1 = I Z, eq. (AZ) becomes
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_l(t) + al(t)r_l(t) + a2(t)_z(t) + a3(t)_B(t) = blUl{t ) + dlll(t)

_2(t) + a4(t)_l(t) + a5(t)_g(t) + a6(t)_3(t) = b2u2(t ) + d212(t)

_'3(t) + ag(t) r_3(t) -- b3u3(t) + d3_3(t) (AS)

Hence this document shall concentrate initially (for the present study)
on the second-order system

_3(t) + ag(t)_3 (t) = b3u3(t ) + d313(t) (A6)

Before this equation is written in state space notation, values for b 3
and d 3, a range for a9(t ), and the order of magnitude for the perturbation
disturbance torques, l(t), are determined. These enable the formulation of
a scaled version of eq. (A6) in state space notation. The scaled version is
more useful than the unscaled version, especially for numerical calculations
and computer simulations.

Ranges for Certain Parameters in the
Satellite Equations of Motion

As an initial step, the vehicle configuration is identified further. For
the purpose of obtaining aerodynamic and solar radiation torque parameters,
a cylindrically symmetrical external configuration is assumed. The mass
distribution can also be assumed to be such that the transverse moments of

inertia I 1 and 12 are almost equal. Douglas studies of laser communication
satellites have resulted in configurations that are close to cylindrical
symmetry. Solar cells, which are arrayed on paddles on the Orbiting
Astronomical Observatory (OAO), destroying cylindrical symmetry, are
mounted on the sides and ends of the spacecraft shell in these studies.
Except for a relatively small radar antenna, these configurations have been
symmetrical.

Ranges on the Parameter d3. --The parameter d3 = 1/I3 is the inverse of
the axial moment of inertia. Fig. A-3 shows the ranges of weight and
moment of inertia expected for the laser satellite. The weight ranges shown
are taken fromthe studythat resulted in Douglas.Document Number SM-48730P,
Proposal to Perform a Preliminary Design Study for an Optical Technology

Apollo Extension System. At the low end of the range, the laser satellite
weighs 900 lb and carries a single telescope with a 3-ft aperture. The upper
end of the range is a 15,000-1b satellite carrying 3- and 5-ft aperture tele-
scopes. The earlier study was not detailed enough to result in moment of
inertia estimates. The correlation in fig. A-3, which includes the Mercury,
OAO, and MORL space vehicles was used to provide this information. The
resultant range on the parameter d 3 is 10 .4 to 1. 1 x 10-2 1/slug-ft 2. A
nominal value of 10 -3 1/slug-ft 2 is suggested, corresponding to a laser

satellite weighing 4,000 lb.
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Ranges on the Parameter b 3. --The parameter b 3 = -C3/I3 is the ratio

of moment of inertia for the fine-pointing inertia wheel that controls the

attitude error _3 (t), to the moment of Lnertia about that axis. The maximum

range of this parameter is o10-7 to -10-5. The smaller number would apply

for extremely precise control. A more reasonable value for fine pointing,

which is suggested for the current study, is -10-6. Papers written by a

number of authors were consulted in arriving at these results, including
DeBra (ref. A2), Cannon (ref. A3) and Adams (ref. A4).

Order of Magnitude for Perturbation Disturbance Torques f(t).--The

peak values of total (not perturbation) torques for the nominal 4000-Ib laser

satellite are shown in fig. A-4, as a function of altitude above the surface

of Mars. These results show clearly that gravitational torques are dominant

in the altitude range considered. The aerodynamic and solar radiation torque

data given in fig. A-4 were derived from 0A0 data prepared by Evans (ref. A5).

The atmospheric density variations with Mars altitude were obtained by reduc-

ing the Earth density values given by Harris (ref. A6) by two orders of magni-

tude. This procedure was suggested by Dr. L.R. Koenig of the Douglas Sp.ace

Sciences Department.

It was assumed that a suitable range for f(t) is ±10% of the total gravita-
tional torques; hence, l(t) is of the order of magnitude of 10 -4 lb-ft.

1,000

800

6OO
Z
v

u.I

i.-
400

200

I I I

[NORMAL CONFIGURATION, WEIGHT = 4,000LB,I_= 1,000]

I I I

,AERODYNAMIC

SOLAR MINIMUM__.

DIURNAL MINIMUM

SOLAR
RADIATION

\

GRAVITATION

0
10"12 10"10 10'8 10-6 10-4 10-2

MAXIMUMTORQUE (LB-FT)

Figure A-4. MaximumTorquesApplied to Laser Satellite in MarsOrbit
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Range on the Parameter a 9 (t). --The expression for c66(t ) in table A-I
contains twb terms. The first term aL3/a_3, is identically zero for exter-
nal cylindrical symmetry. The second term is identically zero for the
assumed mass distribution which makes I 1 = I 2. However, under practical
circumstances, there will be perturbation torque gradients about the B 3 axis
which would appear in the equations of motion as the parameter c66(t) or

a9(t ). These would result from the slight departures from external and
inertial cylindrical symmetry noted previously, such as would be caused by
a radar antenna. [If these departures are significant the equations of
motion are once again completely coupled. Here, however, it is assumed
that the equation about the B 3 axis is uncoupled and, also, that a9Ct) _ 0.
In this way, a solution can be presented for a system that is characterized
by both a torque parameter and a plant parameter (see the section on State

Space Formulation).]

..................... /a_.... l_t_........ _ o_A _,e gravitational torque gradient, oa_ 3 3' was caicu-
lated. For both the total and gradient gravitational torques, an inertial differ-

ence I 1 - 12 of 1/3 13 was assumed. Fig. A-5 shows the orbital frequencies
for circular orbits around Mars, which vary from a maximum of 0. 860 x 10 -3
rad/sec at sea level to 0. 0707 :¢ 10-3 rad/sec at the synchronous altitude of

9,000 mi. The trigonometric functions in a9(t) vary at twice this frequency.

I0,000

8,000

:_ 6,000
Z

_, 4,000

2,000

SYNCHRONOUSFREQUENCY

K= 1.5,5x1015ft3/SEC2
FORMARS

o= AREOCENTRICDISTANCE

2x 10.4 ,,x tu 4 6x 10-4 8 x 10-4

CIRCULARORBITALFREQUENCY (RAD/SEC)

Figure A-5. Orbital Frequencies for Circular Orbits Around Mars

I0x lff4
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This study used a peak value of a9(t) -7 -2of 4 x 10 sec varying sinusoi-
dally at 2.0 x 10 -4 cps. Tt:is is an upper limit for the orbital altitude of

500 nmi. The lower limit of a9(t) is, of course, zero which corresponds to

exact external and inertial symmetry about B 3. The upper limit on a9(t) is
independent of satellite size and is a function only of orbital altitude.
Fig. A-4 shows that there is no appreciable increase in gravitational torque
below 500 mi. Lower altitudes would be undesirable for operational reasons.
TF _ expected range of da9/dt is twice the frequency values shown in fig. A-5,

or _rom 0.23 x 10-4 to 2.7 x 10 -4 cps. The values for a9(t), b 3, and d 3 that
are used in numerical calculations are summarized in table A-III.

TABLE A-III

SUMMARY OF PARAMETER VALUES

Parameter Units Value

a9(t)

b 3

c 3

s ec 2 ) - 1 10 x
_10 -6

10 -3

Scaling of Equation (A6)

Upon substitution of the values for a9(t), b 3, and d 3 (in table A-III)
into eq. (A6), that equation becomes

"_(t) + [4x 10 -7 sin (4v x 10-4t)]_(t)=-10-6u(t) + 10-3I(t) (A7)

To avoid small numbers during numerical calculations and during simu-
lations (for example, 4 x I0-7 or 10-6), eq. (A7) is scaled by defining a new
time t', where

t' = 103t (A8)

Upon substitution of eq. (A8) into eq. (A7), the latter equation becomes

-'--id2_(t')+ [0.40 sin (4x x IO-7t')] _(t') = -u(t') + lOBI(t ')
dt 2

(A9)
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In all discussions in the sequel and in the main body of this report, t' is

the time referred to; however, for notational convenience, the prime notation

is dropped. In addition, (') is used for d/dt'. [If l(t) is modelled from avail-

able physical data the difference between real time, t, and scaled time, t',

must be accounted for accordingly.] Eq. (A9) is written, therefore, as

"_(t) + [0.40 sin (41r x 10-7t)]_(t)= -u(t)+ 1031(t) (A10)

and is the basis for the system studied in the main body of this report.

State Space Formulation

o & ACl. A 2L

on the following second-order system

_(t) + a(t)_(t) = bu(t) + d_(t) , (All)

which is equivalent to the scaled version of eq. (A6), eq. (A10) (see

table A-IV). Eq. (All) can be expressed in vector-matrix notation as

__ (t) = A(t) x(t) + bu(t) + dl(t) (A12)

#
where x(t) is the (2 x I) state vector

scalars,

T
(Xl, xz ) = (_,_)T, u and I are

b = (0 b) T (A14)

and

d = (0 d)T (AI5)

Observe that the plant matrix, A(t), varies very slowly in time (table A-IV).

Often, for notational convenience, the explicit dependence of x(t), u(t),

and _(t) on t is omitted; i.e., x = x(t), etc°
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TABLE A-IV

VALUES FOR PARAMETERS IN EQUATION (All)

Parameter Value

a(t)

b

d

0.40 sin (4 x 10-7t)

-1.0

1000

It is assumed that t(t) [which, from assumptions 2 and 3 in the section on
Equations of Motion, is a combination of second-order aerodynamic, inci-
dent radiation and gravity gradient effects] is either unknown or partially
known. It represents the unknown or partially known environment which acts
to disturb the satellite and, as such, is assumed to be a random perturbation
disturbance torque. More specifically, l(t) is assumed to be a colored (non-
white) stochastic process.

For the purposes of analysis, design and synthesis t(t) is modelled. Here
it is assumed that _(t) is modelled by a first-order Markov process; that is
to say, J(t)-_ g(t) where g(t) is described by the following first-order differ-
ential equation

_(t) = a (t) _ (t) + v(t) (A16)

where v(t) is a white noise process with

E{v(t)} = 0 (A17)

and

E(v(t)v(r)} = V(t) 5(t -T) (A18)

Withe(t) -_ _(t), eq. (A16) and eq. (A12) can be combined; that is to say,
eq. (A16) can be augmented to eq. (A12). The resulting augmented state
equation is

Xa(t ) = Aa(t) Xa(t ) + b a u(t) + f v(t) (A19)
--a

where the augmented state vector x a (t) = (Xl, Xz' _)T and

, d_
Aa (t)-- , (A2O)

t)
i

= (b ' 0)T (AE1)b--a l
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and

La = (O 'i 1)T (A22)
(2x l)

Finally, it is assumed (see the section on Equations of Motion) that the
control u(t) is proportional to the augmented state vector (or to estimates of
the augmented state vector)

u(t) = A(t)x a(t) (A23)

where

A(t) = (kl(t), kZ(t), k3(t) ) (A24)

is a feedback matrix, with components dependent upon the parameters a(t)
and _(t).

As discussed in the opening section, fine attitude control is used to bring

attitude errors, xl(t), to within +_. Plant changes and excessive disturbance
torques could cause x I(t) to become excessive. The problem is, therefore,
to choose A(t) in eq. (A23) such that x. (t) remains within its prescribed limits.
Solutions to this problem which utilize 1 artificial intelligence techniques are

discussed in the main body of this report.
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Appendix B

ESTIMATION OF STATES AND PARAMETERS

{FEATURE EXTRACTION)

A technique used to obtain sequential estimates of the three states x 1 (t),
x2(t), and _(t) as well as the two augmented plant parameters a(t) and a(t) is
described in this section. The technique represents an application of Kalman
filtering to a combined state and parameter estimation problem. While it is

not the only technique used to estimate the states and to identify the param-
eters, it has an advantage over most other techniques in that it is able to
directly provide the bootstrapping effects from the parameter identifications
to the state estimations, and vice versa. The development below is similar
to that given by Kumar (ref. B1) as well as Kopp and Orford (ref. B2); hence
......y c.fthc dctails arc omlttcd.

The system of interest in this section is depicted in fig. B-1 and is
described by the vector differential equation (fig. 2, Part Z).

where

x_a (t) = Aa(t)Xa(t) + --ab u(t) + _faY(t) (B1)

x (t) = (Xl, x2, _j)T (BZ)
--a

,o)Aa(t) = (t) 0 (B3)
0 a(t)

b
--a

f
--a

= (0 b 0) T (B4)

= {0 0 1) T (B5)

and v(t) is a scalar white noise process with

E[v(t)] = 0 and E[v(t)v(T)] = V6(t - r) (B6)
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u(t)_

,_(t) [+n._(t)

a ._1 lYa +_ z(t)
--t Aa(t)

Figure B-1. System with Measurements
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and u(t) is a scalar [u(t) = u2(t) for the system in fig. 2, Part 2 and u(t) =u*(t)

for the on-line-learning control system in fig. 3, Part 2].

For notational convenience, the subscript a is omitted from all vectors

and matrices in the rest of this section. Where confusion between the aug-

mented and unaugmented systems is likely to occur, the subscript will be

included. Eq. (BI)is written, therefore, as

x(t) = A(t)x (t) + b._.u(t)+ w(t) (B7)

where w.(t) is a 3 x 1 vector white noise process with

--l.. _.,i .. ..... .. , .... ,- , , ,

and

W = 0

0
(B9)

The observed output, y_(t) is assumed to be

where

y_(t)-- Mx(t) (B;0)

(1 o o) .'.Bll)M = 0 1

that is to say, it is assumed that xl(t ) and x2(t ) are observed. The analysis

below is not affected if different sets of observations are made; only lvi is

affected. Finally, it is assumed that the measured values of xl(t) and xz(t )

are corrupted with measurement noise. The measured output is

z(t) = _(t) + n_At) (BI2)

where n(t) is a 2 x 1 vector white noise process, with

(B13)
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and R is the positive definite matrix

(BI4)

The problem is to estimate the elements a(t) and a(t) of the augmented

plant matrix Aa(t ) and the components of Xa(t ) from a knowledge of the
measured output z(t) and the control u(t). Itis assumed in the sequel that

the estimation and control problems are separable. The implications of

this assumption are discussed in the main body of this report,

Before proceeding with the development of a filter for obtaining the
combined estimates, the following definitions are in order:

(1) P---A (t) _ augmented plant parameter vector, where
a

P---A (t) = (a(t), a(t)) T (B15)
a

(2) xA(tllt)[_(tllt); _---A (tllt)]--Aestimatedvalue °fx--(t) IA(t); P---Aa (t)]
a

at any time t 1 __ t given the observations z(0) ..... z(t).
_(tllt) approximates x(tl) in some suitable sense.

I (tllt)[Aerror in estimating _ [A; PAa ] attime(3) _(tllt) _(tllt); P_Aa _ x

t 1, where

A

__(tllt) = x(t I) - X(tllt) (B16)

The estimation and error vectors and matrices above are used extensi-

vely in the next few paragraphs, where the filter is derived.

A Priori Estimation and Error Equations

A A ,,,

Here, equations for xa{tlit ), PA {tllt), Xa(tllt) and PA_{tl[t) are
formulated. The formulation lmtlally is continuous and then the continuous
equations are discretized. This is done since the optimal filter, derived in
the next paragraph, is discrete.
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To begin, equations which describe a(t) and or(t) are augmented to
eq. (B7). Using the notation in eq. (B15) these equations combine to yield

the following vector differential equation for PA (t):
a

P---A(t) = I"(t)PA (t) + _ (t) (BI7)
a a

where

I'(t) = Y2(t
(B18)

and @(t) is a Z x i vector white nui_ pruc_, wi_h

E[__.@(t)l= O and EI_)(t)@T(T)] = M 8(t-v) (BIg)

The fact that _(t) is a random process provides a statistical degree of
freedom for the estimation of a(t) and c_(t).

Next, expressions for _(tllt), APA_(tllt), _(tllt), and _A.(tllt)are

obtained. R(tllt)and PPAa(tl[t) are un_)'_ased a priori esti_r_t_cesof x_(tl)and
PA_(tl), r_spectively[these estimates do not make use of the measurement

z__t_)]. From eq. (B7), the unbiased estimate of x_ (tl) is found according to

_(tllt) = _(tllt)_(tllt } + bU(tl) (B20)

where

_,(tllt ) = (tilt) 0 d (B21)

o  (tllt)/

and, from eq. (BI7), the unbiased estimate of P---A(tl) is found according to
a

_--A (tllt) = r(tl)_--A (tll t) (B22)
a a

Eqs.(B20) and (B2Z)are the desired equations for _a(tllt)and ip__A(tilt)'

respectively, a
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eqs.

To obtain the expression for _{tllt), one proceeds as follows.

(BI6), (BT), and (B20),

i(tll t) i(tl): -- _x(tlIt)

_.l_rom

_(tllt) = A(tl)X_(tl)- ._(tllt) xA.{tllt) + w{t I)

__(tllt) = X(tllt ) x_A(tllt)+ _(tllt ) -x(tllt) + w(tl) (BZ3)

In eq. (BZ3), the second-order effect A(tllt)_(tll t)has been neglected, and

A(tllt) is [from eqs. (BI6), (B3) and (BZI)]

(io :)A(tllt ) = --(tllt) o (BZ4)

o _ (tI it)

Proceeding in a similar manner for --PA (tllt), it follows that
a

--PA (tllt) = r(tl) _A (tl#t) + __ (tl) (B25)
a a

Eqs.(BZ3) and (BZ5) are the desired expressions for _(tll t) and -PA (tllt)'
respectively, a

Next, a new vector q(t) is introduced; it is defined as

q(t) : (x_(t), -PA (t)) T (B26)
a

Eqs. (B20) and (B2Z) combine to give an equation for __(tll t) and eqs.

and (B25) combine to give an equation for._(tllt):

(B23)

_(tllt) = O(tl) _(tllt) + LU(tl) (B27)
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and

_l(tll t) = Q*(t 1) ._(tlJ t) + _*(tl) (B28)

Eqs. (BZ7) and (BZ8) are the continuous (augmented) a priori estimation
and error equations, and, in these equations:

i I
t t)

0

0

/ 0

-Aa(tlJt)

= 0

0

\ o

(B30)

I 0 0 0

0 d 0 0

/0 0 ¥(t 1) 0

0 0 0 ¥(tz)

1 0 0 0 "_

A

0 d -x1(tll t) 0

0 _(tll t) 0 _(tl{ t)

0 0 Yl(tl) 0

0 0 0 ¥2(ti)/

b 0 0 O) Th = ( 0 (B31)

and

__.*(tl) = ( 0 0 v(tl ) 01(tl) 0g(tl)) T (B32)

Observe that, because of the appearance of the states Axl(t 1 It) and _(t l{t)

in Q*(tl), the a priori error equation is nonlinear; hence, as will be seen in
the next paragraph, the optimal filter is nonlinear.
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Finally, eqs. (BZ7) and (B28) are discretized, for use in the next sub-

section. The resulting discrete (augmented) a priori estimation and error

equations are:

__(n+lln) = ¢_(n+l, n)c_(n[n) + __(n+l,n)u(n) (B33)

and

:¢

._(n+lln ) = _(n_-l, n) __(n]n) + _ d(n+l, n). (B34)

In these equations:

q(n+l I n) _ q_ [(n+l)T s n = 0, 1 (B35)

_,(n+l, n) = eQ(n)Ts (B36)

(n+l)T s

_A(n÷l, n) = _nT _(n+l, T) L (iT (B37)

s

_*(n+l, n) = e Q (n)Ts (B38)

and

*d(n+l, n) = fnT(n+l)Ts _(n*l, T) __*(T) dT (B39)

s

In the derivations of eqs. (B33) and (B34), it was assumed that Q(tl) and

Q*(tl) are piecewise constant over each sampling interval.

For the purposes of simulation, it is interesting to observe that

__2 (n+l,n), in eq. (B39) is a zero-mean vector random-sequence with a

covariance equal to CT s, where

E {__*(t) __*T(T)} = C6(t-_) (B40)
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and

O 0 0 0 0 1

0 0 0 0 0

C = 0 0 V 0 0 (B41)

0 0 0 tall 0

0 0 0 0 lazz

The expression for C is derived fromeqs. (B32), (B19), and (B6).

A Posteriori Estimation and Error Equations

Here, the measurement taken at t = t 1 is incorporated into the estima-
tion equations; the result is an optimal sequential-estimator. The de_'ivation
of the optimal estimator is well-documented in the literature (refs. B1 and BZ,

for example); hence, in this subsection, the optimal estimator is only sum-

marized. Its structure is depicted (fig. B-Z), with

(Zx3)

* ( : )M = M, 0 (B4Z)

and M is given in eq. (BII)

#T
K (n) • (n,n-l._.n-l._*

= n, n-l) + CT s M

(B43)

.T }M_,T RTs]_I[M*I_(n,n-l)_(n-l)# (n, I) + CT sn- +

where _ , _ and R are given in eqs. (B38),

and the covariance _ is given a-"

(B41) and (BI4), respectively,

at(n) [I K*(n)M*] [_(n, aT= - n-l)Cr(n-l)_ (n, n-l) + CTs] ,(B44)

_(n+lln) is given in eq. (B33), and _(nln) is the optimal a posteriori estimate.
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It must be observed, that the system in fig. B-I ties into the filter in

fig. B-Z in two places: z(n) and u(n). In addition, the filter is nonlinear,

since Q_(n) is a function of_(n +lln); hence, the convergence properties of
the filter are subject to question. To-date, to the best knowledge of the

author of this report, the convergence properties have not been studied.

What usually is done is that a linear region of operation is found, through
trial and error, and the filter is operated only within this linear region.

Any departure from the conditions required to maintain the filter operating

in the linear region may lead to instabilities and, therefore, to a filter

which is unacceptable for the new set of operating conditions.

It is not within the scope of the present study to investigate the

convergence properties of this or any other nonlinear or linear estimator;

hence, the approach was to determine a linear operating region for the

filter in fig. B-Z, an operating region within which it is possible to obtain

estimates for Xa(t ) and __.PAa(t). The estimates are required for the on-line-
learning control system in fig. 3,Part 2. Sirn_11ation results for the filter

are presented and discussed in the section on State and Parameter Estima-
tion for Control in Part 2.

_(nln)

z(n) K*(n) _ _...(nIn)

_(.I.-I)

+

_u(n)

Figure B'2. Discrete Optimal Filter Structure
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Appendix C

DESIGN OF NOMINAL (SUB-OPTIMAL) CONTROLS
FOR FIXED PARAMETERS

The sub-optimal control u 2 (t), which serves as the initial control choice
for u*(t) in the on-line-learning control system (fig. 3,Part 2) is obtained here
for the off-line augmented system in fig. C-1 Sub-optimal control u S (t) is
found by optimizing a cost function which is quadratic in the attitude error

(Xl) and control (uz) and is obtained for specific combinations of a(t) and a(t).
Specific values of a(t) and a(t) are denoted a and a, respectively; hence, for

specific values of these parameters Aa(t) = A in fig. C-1.a

Xa(t ) is a vector stochastic process, since it depends upon the random
process v(t). For every motion, a random variable V is defined as

1/o12 2]V =_ q x 1 (t) + r u z (t) dt (Cl)

The constants q and r, which are both positive, penalize attitude errors
and control effort, respectively. The performance index is now defined to

be the expected value of V (with respect to the probability distribution of v(t)).
Control u2(t ) is found by minimizing E {V}.

As stated, this is a problem in stochastic optimal control. An alternate
approach to the suggested solution of minimizing E {V} is provided by the
Separation Theorem (ref. C1) which states, in effect, that the solution to
the above problem can be obtained in the following two steps (ref. C2):

(I) Estimate Xa(t) by filtering theory (as in Appendix B).

(2) Obtain the optimal control u_(t) from noise-free regulator theory.

The expression for u_(t) is then found from items 1 and 2 according to the

Separation Theorem, as illustrated below.

Optimal Control for Noise-Free Regulator

To find u_(t), the optimal control for the noise-free regulator, one
assumes noise effects are absent in fig. C-l and minimizes V in eq. (C1)
For the noise-free regulator problem V and not E {V} is the performance
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sI
X a

CONTROLLER

_.,u2 I I.,

I-"

._. (x,,x2' _.)T

-Xa= AaXa+-hau2+fa v(t)

Aa, ba andfa AREDEFINEDIN APPENDIXA.

Figure C-1. Off-lineAugmentedSystem

x_

index, since v(t) is zero for all t. The solution for u3(t ) is,

(see ref. C2, for exa.mple),

_k

u3(t) = h(t) x a (t)

as is well known

(CZ)

where the optimal gain matrix, A(t), is

h(t) = . ;_Ib T P(t)
r--a

(C3)

and P(L), which is a positive-definite, symmetric matrix (3x3), is the solution
of the matrix Riccati equation

dP(t)
= P(t) A + A T P(t) - P(t) b a ! b T P(t) + Q (C4)dt a a -- r --a
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where P(TI) = 0 and

Q = o (c5)

O

In the sequel, it is assumed that the transient region for P(t) is a small

fraction of the total interval of control 0-<t_<T 1. In such cases (see refs. C2

and C3, for example), the response of the system for t<<T 1 is determined

entirely by the steady-state values of the gains. In addition, when Tl-_0

the gains assume their steady-state values throughout the entire interval

0-<t<-T:l. Since our ultimate objective is to obtain a time-invariant nominal
control, only the steady-state optimal gains are computed, provided, of

course, the steady-state gains exist. Since the system is not completely con-

trollable, there is no guarantee that the steady-state gains do exist (see

refs. C2 and C4, for example). A direct simulation of eq. (C4), for values

of interest, of a(t) and a{t), was performed. For a random sampling from

the sets of values for a(t) and a(t), convergence to a steady-state occurred;

hence, it is assumed in the sequel that the steady-state gains exist and can

be found by setting the right-hand side of eq. (C4) equal to zero. The result-

ing equations are

b 2 2

-2a P21 --_ P21 + q = 0

b z

Pll - a P22 --_- PZl PZ2 = 0

b 2

dP21 + _P13 " a P23 --_- P21 P23 = 0

b 2 2

2P21 -7 P22 = 0

b 2

dP22 + aP23 + P13 - _ P22 P23 = 0

b 2 2

2dP23 + 2 _P33 --T P23 = 0

(C6)
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For purposes of this paper, it is not necessary to solve for all six

unknowns Pll, P22' P33' P21' P23' and P13" This is because A(t)in eq.

is only a function of P21' P22' and P23; that is to say

(C3)

A b( )-r P21 P22 P23 (C7)

eq.
Upon solving eq. (C6) for P21' P22' and P23 and substituting eq.

(C2), u_(t) becomes

u3(t ) = k I xl(t) + k 2 xg(t) + k 3 _(t)

(C7) into

(C8)

where

(C9a)

(C9b)

_1000[Gi2-(_a2 + p- a) - ¢a2 + p + a]

)'3 = (C9c)

or2 + y_a2 + p - a_2 (Y_a2 + p - a)

and $

p= q/r (C10)

#

The nominal control, u2(t), for the on-line-learning control system in
fig. 3 (Part 2) is found, from the Separation Theorem, as

A
u 2 (t) = Ax a (tlt). (Cll)

SThe values for b and d in table A-IV were incorporated into the solution of

eq. (C6).
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To completely determine kI, k2, and )'3in eq. (C9), the weighting factor
p must be specified. This can be accomplished in a number of ways. For

example, 9 can be chosen such that the sensitivity of kI, k2, or k3 to varia-
tions in the parameter a (or u) is small. This type of choice for p might be

useful in the implementation of control situations, since, by choosing P

suitably, it might be possible to make the nominal control relatively insensi-
tive to variations in a (or a). On the other hand, 9 can be chosen such that

for specific values of a and crattitude errors remain within 4-0.20 arcsec in

some probabilistic sense. This latter approach was adopted and is elaborated
upon further in the next section.

Computation of Weighting Factor

It is desired that attitude errors remain within ±0. Z arcsec (seeAppen-

dix A) in spite of a certain amount of uncertainty about the perturbation dis-

turbance torques llt). InAppendix A, a range for 1(t) was specified; that is,

11(t)I<10 -4 Ib-ft. The certainty that J(t) is in the assumed range can be

expressed in terms of the probability.

Pr{11(t)l< i0 -4 Ib-ft} = Pt" (el2)

If it is very certain that f(t) is in the range, .Plis very close to unity.
On the other hand, if it is not so certain that 1(t) Is in this range Pt will not
be so close to unity. It shall be assumed that at each instant of time, t = tl,

l(tl) is normally distributed. The standard deviation, ¢_, of l(tl), is shown

in fig. C-2 as a function of pf [see table 26.5 in ref. C5|.

The uncertainty in _(t) is reflected in an uncertainty about attitude errors,

xl(t ). It is known, for example, that u_(t) drives the expected value of xl(t) to
zero in the fixed parameter case. However, if x l(t)varies by large amounts

about the zero mean, due to poor knowledge about 1(t),then fine attitude con-
trol is not achieved satisfactorily. As a measure of the variation of xl(t) the

standard deviation _xl can be computed. To this end, it is assumed that at

each instant of time, _t= tl, x(t 1) is normally distributed.

In the follov_ing section, _Xl is computed as a first step in the design of
the weighting factor p. The ultimate objective is to design p and then compare

Pr{Ixll < 0.2 arcsec _ with Pr {]11 < 10-4 lb-ft} for a number of designs.

Computation of _x 1. --Here it is assumed that a<0 and, in addition]', that
u_{t) = Axa(t); hence, the system in fig. C-1 can be represented as in fig. C-3,
wner e

(1000 - _i3)
H(s) = (Cla)

(s+ial) [sz+x zs+(a+xl)]

]'The effects of state estimation errors are not known a priori; they are

experimentally determiried in Section 3 (Part Z) and depend upon the specific
estimator design.
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Figure C-3. Relation Between Attitude Error and White Noise Input
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• For stationary linear systems (as in fig. C-3)

z
= -- SxIx1 (to)d_ (C14)_x 1 3_ -co

where

and

Z
S (to) = Svv (w) [H(jto)[ (C15)
XlX I

Svv (_) = V (C16)

since E{v(t) V(T)}_ V6(t Z-_). (rx. in eq. (C14) is evaluated by a contour
A

integration; the _Igebra, though lengthy, is straightforward. The resulting
expression for _ is

x I

z (zc_n + I-I - 4 "_2) + .3
_z = (i000- x3)Zv _n (c17)

Xl 4 I"I_ to3n [( 2 + 2,2n) _ (2_n.) 2 ]

where [see eq. (C13)]

kZ _ Z._ton (ci8)

and

Xl __a,_nz _ a (C19)

Observe that for small values of a and a, eq. (C17) becomes

2

_x] (1000 - ×3) z

n

(cz0)
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_2
One approach to the design of p might be to constrain x in eq. (C17);

1
however, due to the very complicated relations between kl, k2, and k3 and p
[ see eq. (C9)] this approach was not adopted. An alternate approach is

described in the following section.

Worst Case Designfor Weighting Factor p.--Here v(t) in fig. C-3 is

replaced by ±3_ The resulting expression for Xl(s ) is

• 3vQ-(1000- ×3)

xl(s) = s(s + I_1) [ sa + ×as + (a + ×1)] <czl)

The magnitude of the steady-state attitude error in eq. (C21) is now con-
strained to be less than or equal to 0.2 arcsec (_). This requirement serves
as the basis for the design of p and results in the following inequality

or

I Lim s Xl(S) I _<_ (C22)S--_O

3vZ-v-. (lOOO - x?,)] _<, (cz3)I,_1 (a + k1)

Upon substitution of eqs. (C9a) and (C9c) into eq. (C23), and after a bit

of algebra, eq. (C23) becomes

r _ 4 _< 0 (C24)

where

2
r = p + a (C25)

and

C
3000_"

(cz6)

C z = az (2a + a 2) - 2 C 1 (CZ7)
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To solve eq. (C24), V_in eq. (C26) is required. Note, also, that V is

needed in eq. (C17) for _x_; thus, before discussing the solution of eq. (C24),
an expression is obtained fbr V.

Expression for V. --Here V is obtained in terms of _1 and a. It is
assumed that t(t) _- g(t), where

(t) = _FAt) + v(t) (cz8)

and

E {v(t)v(T)} = VS (t- r) (czg)

and, therefore, that v_ = _1" From the solution of eq. (C28), it follows that

v -l_l Itz - tlI (c30)
E{_(tl)_(tz)} : Z I_I e

hence,

v (CSl)

which, from the assumption that _ = _1 ' leads to the following expression
for V.:

v --z I_] _ (csz)

Eq. (C32) is the desired result.
it is possible to relate V to Pr{[_] -_ 10 -4 lb-ft}.

Solution For Weighting Factor 9. --The solution for 9 proceeds in two
steps:

{1) Selection of _l ' based upon knowledge of l{t),

(Z) For various combinations of a and a:

(a) The real roots of eq. (CZ4) are derived

(b) For the roots in eq. {C24), 9 in eq. (CZ5) is derived
[if there is more than one real root, the smallest root,
retained since control effort is proportional to p].

Note that, from eq. (C32) and fig. C-2

is
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Eq. (C24) was programmed. For all combinations of a and a considered

[]a[ _< 0.40 and - 1 -< a_<-0. 10] during this study, eq. (C24) had two real
roots. One root was slightly smaller than C 1 and the other root was slightly
larger than C [observe, from eqs. (C26) and(C27), that for small values of
a and a C 2 = 1_ 2 C and, that eq. (C24) reduces approximately to (r - C1)4 = 0].
Figs. C-4, C-5, an_ C-6 summarize P as a function of a and a for three

designs: (1) Pt = 0.75, (Z) p! = 0.96, and (3) Pl = 0. 998, respectively. The
surface in each of these figures can be viewed as the nominal feedback param-
eter switching surface, since kl, k 2, and k3 are functions only of P for given
values of a and a. It must be observed that as knowledge of t(t) becomes less

precise P increases; hence, more control effort is exerted as p1 becomes
smaller. In addition, for small values of a and large negative values of a a

great deal of control effort must be exerted. This is due to the fact that the
open-loop system is unstable for negative values of a(t).

Once a value /or _! ".s chosen _xl and, subsequently, Pr{[xl[ < 0.2
arcsec} can be computed for specific values of a and _. For small values of
a and a [see eqs. (C18), (C19), (C9a) and (C9b)], it is straightforward to show
that

= 0. 707 (C33a)

pl/4con = rad/sec (C33b)

Z
and that the approximation for fix 1 in eq. (CZ0) is a good one. After _Xl is
computed from eq. (C20), the expression

[ 1 < O. Z arcsec} = P {[Xll < O. 97 x I0 -6 radians} (C34)Pr { Xl - r -

is found from table Z6. 5 in ref. C5 (see fig. C-7).

An example that illustrates the behavior of Pr {Ix [ - O.Z arcsec}

against Pr{[l[ -< 10 -4 lb-ft } appears in fig. C-8. T_e tradeoffbetween
the three designs must be noted. If it is not very certain that [1[ s 10 -4 lb-ft.,
as in design 1, a large amount of control must be used (see fig. C-9; control
is proportional to p). However, because so much control is used, attitude
errors are contained to within ±0. Z arcsec with a probability that is very close
to unity, even if the actual disturbance torques are less than or equal to
• 10 -4 lb -ft 50% of the time. On the other hand, if it is very certain that

I tl < 10 -4 lb-ft, as in design 3, about one-third of the previous control is
used. However, if the assumption is wrong, that is if the disturbance torques
are less than or equal to ±10-4 lb-ft less than 99. 8% of the time, attitude
errors increase (in probability) very rapidly. For example, if p. = 0.80,

Pr{Ixll_<O.Zarcsec}--0.96;ifp --O.SO,Pr{Ixll-<O.ZarcseJ}= O.V3.
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P(z)

\\_\\\\\\\_

-z I

Pr { I xll < 0.97 x 10"6l= Pr{ I zll < 0.97 x .]0 -6 I
- - aXl I

xll<__0.97x]O'6i= 1- 2 Q(zI)

zI)

. xl(tl)

r/////////// ,,x,
zI

Figure C-7. Computation of Pr I I Xll <_ 0.2 arcsec I
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0.2

Prll xll < 0.20arcsecl

/
a =-i 1.80

0

0 0.2 0.4 0.6 0.8 I.O

Prl Itl < 10.4 Ib-ftl

Figure C-8. Probability that Attitude Errors Will be Less Than,_ 0.2 arcsec Versus Probability that
Disturbance Torques Will be Less Than ,_ 10-4 Ib-ft for Three.Designs of p"

(].)Pt = 0.75, (2) Pt = 0.96 and('3) Pz = 0.998, Respectively.
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The curve for the natural frequency COn, in fig. C-9, was obtained using
eq. (C33b). As knowledge about l(t) increases, COn decreases, and the system
responds slower. The curve for the weighting factor P was obtained, in part,
from eq. (C25) and, in part, from the approximation to eq. (C24):

r=C 1 -- p

which, as discussed above, holds for small values of a and a.

A continuation of the design of this appendix to systems of higher-order,
which makes use of off-line training, is discussed in Appendix D.
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Appendix D

REALIZATION OF NOMINAL CONTROLS THROUGH

OFF- LINE- TRAINING

Theoretically, at least, the nominal feedback parameter vector PA could
be obtained for all possible combinations of a and a, as in Appendix C; how-
ever, such an approach would not be practical for plants with more than two
variable parameters due to the large computer storage requirements that would
result. In addition, for higher-order systems it usually would not be possible
to obtain closed-form solutions for the steady-state gains in the matrix
Riccati equation; hence, an alternate approach may be required.

One such approach is tc obtain PA for a representative set of plant

--P'IAa j = 1" The set of couples P_a, jJ = 1 is
parameter vectors

is then used to train an off-line-learning controller.

The function of an off-line-trained controller is to define the complete
control law for a plant, with knowledge of the correct control at only a finite
number of points. The controller is a pattern recognition device which
accepts patterns {plant parameters) as inputs and produces a classification
of that pattern (the control) as an output. The relation between input and
output is obtained by training a trainable controller with the known finite
sample (the training sample). After training, the trained controller (now a
deterministic device) provides an implicit definition of the entire control law
by virtue of the controller's generalization characteristics. Generalization,
of course, is the ability to correctly associate plant situations, and the con-
trols for them, for plant situations which were not included in the original
training sample. The ability to do this hinges on the selection of an adequate
model for the trainable controller (the functional form of the adaptive mech-
anism) and a representative training sample.

The trainable controller is organized about discriminators with variable
parameters that are adjusted during a training process. Two basic training
methods have been distinguished: parametric and non-parametric See Nilsson
(ref. D1), for example. The non-parametric methods are applicable when
little or no information is available regarding the distribution of patterns in
each classification. Parametric methods, on the other hand, are used when

information is available. For the present problem the latter are applicable,
since it is known that similar plant parameters will have somewhat similar
controls.

193



The realization of an off-line-trained controller may be accomplished in
two stages:

(1) A representative training sample consisting of the couples

J

_P_ is obtained.

a j=l

(2) A self-organizing controller is trained using the above sample.

The above training sample, hereafter designated as Sl, is obtained by

selecting the points _3 uniformly throughout the augmented plant parameter

space and obtaining the nominal control, P_, associated with these point.s.

mh_ _,_ ;.... I_,_A _._ _.._.. if training :.... _.......-I .... ] "............................... F,_,_u Oil _J.tu..-,t.Lu.[,_ ___i_a}
which are dispersed throughout the entire augmented plant parameter space,
then all situations will be accounted for in the trained controller. The number

of points, J, required in order to have a representative sample is not known

a p_iori; it is selected arbitrarily initially and increased until generalization

with the trained controller is acceptable. Generalization is determined using

another sample, one with a size also equal to J, and one with elements also

uniformly distributed throughout the augmented plant parameter space.

The function of the adaptive computer (self-organizing controller), after

training, is to generate the nominal control, PA' for any arbitrary plant
parameter vector, _ . The adaptive comput-_r organization that is used here

has the capacity to proaide at most E discrete control choices, where J is the

number of elements in the training sample. No provision is made for inter-

polation; that is to say, points in the augmented plant parameter space that

are not in the original training sample are classified into a category corres-

ponding to the most similar element, P_k a (j = l, 2, ..., J), from the training

sample. The metric that is used for measuring similarity is the Euclidean

norm; hence, classifications are made on the basis of minimum distance.

Two adaptive computers are d¢veloped in this section. The first is syn-

thesized directly from the training sample and has the ability to generate J

discrete control choices. The second is organized like the first except that

it is only able to generate n discrete control choices, where n<J. It is shown

that the second adaptive computer has the advantage over the first of smaller

size in hardware, or, equivalently, requires less computation time in a com-

puter simulation. The disadvantage of the second computer over the first is

that the number of possible control choices is fewer; thus, the selection of

controls to affect a minimum distance classification is poorer for the second

computer. This deficiency is minimized, however, since the n control

choices are selected on the basis of the frequency of occurrence.
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Adaptive Computer A

The first adaptive computer utilizes the training sample S1 directly.

classification of an arbitrary point P^ (which may or may not be in the---_a
training sample) into one of the J control choices is based on a minimum

distance classification. This classification requires the computation of:

The

• ! . T .

a a a

for j = 1, 2 ..... J. The control/ selected for PA a is the one that is associ-

ated with the element in PJ I J for which eq. (D1) is smallest. The
--Aa j j = 1

discriminant for the mimmum distance classifier is developed next.

If both sides of eq. (D1) are squared, the result is:

2

a a a a a a a a

T " 1 jT J ] (D2)
= PTa --PAa -2 PAa P_ka -_ P a PAa

for j = 1, 2 ..... J. Quite obviously eq. (D2) is minimized when the term

in brackets is me_ximized, regardless of the first term (this term is common

for all j). The jth discriminant # becomes:

gj(EA ) = P--A EJ -
a a a a a

for j = 1, 2 ..... J. Observe that gj (_PAa) is linear and may be realized

withthe linearelementshownin fig D-I Theweightswjl, andwj3
are specified on the figure. The complete adaptive computer shown in

fig. D-2. The operation of the computer is as follows: A plant parameter

vector is presented to the machine at the designated input. The outputs of

the J discriminants [eq. (D3)]are available as inputs to the maximum

*The relation of discriminants to adaptive computers is discussed in Nilsson

(ref. D1) and, therefore, is not elaborated upon here
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Wjl
,J

+1

ii"
_ gj (-PAa

W_^

Vl = pJ.

Wj2J -Aa

1 pjT pj
WJ3 2 -Aa -Aa

)= Wjl a+ wj2 a + wj3

Figure D-1. Realization for Equation (D3), j = 1, 2, ..., J

selector. This device selects the maximum discriminant and produces, as

an output, the control choice associate_t with this discrirninant. The number

of discriminators required for this computer is J; that _s, J elements in hard-

ware, or J iterations in a computational scheme. •

Adaptivh Computer B

While excellent results may be obtained with adaptive computer A, the

computers disadvantage is the large number of elements (discriminators)

required. The development of adaptive computer B is oriented to reduce the

number of discriminators and at the same time minimize the loss in pro-

ficiency because of this reduction. It involves the following steps:

(I) Modify S1 to $2 by reducing the number, of control choices in Sl

from 5 to n (n<J).

(2) Specify a computer using S?-. and the minimum distance criterion

as used for adaptive computer A.

(3) Eliminate all redundant elements in item 2.
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Figure D-2. AdaptiveComputerA
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The reduction of controls specified in the first step is accomplished by merging

similar controls P_(j = l, 2, ..., J) in Sl into n prototype controls P_ (i = l,
2 ..... n). Two t-_chniques for affecting this reduction are discusse-d next.

The first tcchnique is elementary in concept and is easy to apply. The

feedback parameter space Sp A is pregridded into n mx m x m cubes; the

ce.nter of ,_ach square (hypercube) then becomes a prototype. The points

.P__ (j = 1 ..... J) in this space are merged into the prototype point of the
hypercube in which the points lie. The selection of prototypes by t.his method

usually will not be very efficient unless the distribution of points P_ (j = 1,

.... J) happens to be uniform throughout SpA, for prototypes may be

assigned where classifications rarely occur.
"-/l

A more efficient method is one in which prototypes are created according

to the density of the vectors in. Sp_A._ This is accomplished by performing a

cl_t=x =l_iy_i_ of the ieecoacK parameter space and assigning prototypes to

the cluster points found. One method for performing such an analysis has

been successfully used by Sebestyen (ref. DR) and is presented next (as our

second technique ).

Sebestyen's technique is similar to the approach used in on-line learning

for creating hyperspherical control situations. Initially the method requires

that a cell {a hypers.phere of radius D) be created and centered on an arbitrar-

ily selected point PJ (j = i, 2 ..... J). The mean of this cell, M1, is initially

set equal to P_ an-dAthe number of points in the cell, N 1, is initially set equal

to 1. If the next pattern falls within the cell (that is, if the distance between

M 1 and the pattern is tess than D), M 1 is updated by recomputing the mean

of the two samples, and N 1 is set equal to 2. When a sample falls sufficiently
far outside the first cell, a new cell is created whose center is located at that

pattern. If the sample falls outside the first cell by a small amount, then the

sample is temporarily stored. The purpose of this step is to create a guard

ring which will allow maneuvering room for the cell. As the process continues

all vectors are forced into cells. At the conclusion of the process the mean

of each cell is the location of a cluster point. The number of points in the cell,

N i (i = 1, 2 .... n), divided by J, the total number of points, is the a priori

probability, p.,t of the occurrence of the i TM cell. Cells with low values of Pi
may be combined with adjacent cells if a reduction in the number of prototypes
is desired.

The modified training sample $2, obtained by either of the above techni-

ques, results in the formation of n mutually exclusive subsets. The elements

of each subset are the points p3_ (j =1," 2 .... , J) inS2 which have the same

_eaith
control. The designation for t subset (i = 1, Z ..... n), which contains

m i elements, all of whose controls are P_ is IP i'klmi Since there are
' --Aa Ik = 1

n mutually exclusive subsets,

n

2 m i = J (D4)
i= 1
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T:,e elements of each subset define regions of constant control in Sp
--Aa

Each of these regions, in general, will vary in size and geometry depending
on the number and the location of points in the subset. The boundaries which
separate these regions may be viewed as decision boundaries which are to be
realized by the adaptive computer. The adaptive computer to be used requires
n discriminators, one for each control category. As before, the output of the
computer is the control associated with;

maxi=l, ..., n

The computer organization which is used to realize the decision boundaries
is shown in fig. D-3. Each discriminator is associated with the boundary that
defines the control region of that discriminator.

The discriminator, gi (PApa)' whose output is maximum for all points in
th

the i control region, uses m i subsidiary discriminators which are defined
directly from the i TM subset. Each subsidiary discriminator is a minimum
distance classifier; hence (compare with weights in fig. D- 1 )

(k)

Wil

wi2 (k)

i, k
= PA (D5)

a

and

wi3 = - 2 _ -PA
a

(D6)

where k = 1, . .. , m., .define the appropriate weights of the k TM subsidiary

discriminator in the lith discriminator. The output of the i th discriminator

for an arbitrary input _p_Aa is

T

IT ikl/pik)ikImax PA PA - : \--A a PA = gi (PA) (D7)
k=l, ..., m i a a a a
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[compare with the discussions for eqs. (D2) and (D3)]. A detailed structure
for the i th discriminator appears in fig. D-4.

The decision surfaces which may result from the above process are
demonstrated in an example in fig. D-5a. There are three sets of points
which define three control regions. If the points are used to specify three
discriminators [using eqs. (D5) and (D6)] the indicated decision boundary
results. This boundary is defined by segments of straight lines which sep-
arate points of different classes. The lines are always drawn equidistant
between the closest points of different classes. The lines between points
of the same class are not drawn (though they are defined in the computer)
because they do not partition different control regions (hence, they are
redundant). This point introduces the final step in the development of the
adaptive computer, namely, elimination of redundant elements.

In fig. D-5b, it is shown how the exact decision boundary in the above
example can be defined using only essential points from fig. D-Sa. Each
point used corresponds to an essential subsidiary discriminator in the com-
puter. The elimination of redundant elements from the computer may be
accomplished with the following procedure:

(1) Arbitrarily remove the subsidiary discriminant gi (k) (P---A)
from the computer (see fig. D-4). a

w(k)

il

(2) Apply the point -_a = w(k) as an input to the computer.

ia j

{3) If the classification produced is P_ discard the element; if not
reinsert the element.

(4) Repeat the above steps for all subsidiary discriminators.

The above procedure essentially tests every point to see if it is needed
to define the decision boundary. This, of course, results in reducing the
number of elements in the i th discriminator from m i to another number, say

li(li<mi ). It is not possible to state the extent of the reduction, as it depends
on the number, size and distribution of each subset.

The final test of the resultant computer is its generalization characteris-
tics. As stated previously, generalization is the ability to classify points
correctly even though the points were not included in the training sample.
This test requires a sample similar to S1; the sample should have points

which are uniformly distributed throughout SPA a (but not the exact same

points} and sample size should be also about J. This sample is applied to
the computer and an evaluation procedure determines the proficiency obtained.
On this basis a decision is made concerning the acceptability of the adaptive
computer's generalization characteristics. If generalization is found unac-
ceptable, then a new sample is required, one which is larger than S1, and a
new adaptive computer is developed with this sample.
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The final comment is concerned with the implementation of the adaptive
computer. Two alternative approaches are available; hardware and simula-
tion. The choice of one over the other depends on various systems considera-
tions that will not be discussed here. The hardware approach results in a
small package since each weight [eqs. (D5) and (D6) ] may be realized with a
resistor and the summation may be performed with miniature solid-state
circuits. A computer implementation (simulation) requires that all of the
subsidiary discriminants must be evaluated and compared in order to deter-
mine the maximum values in eq. (D7).
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Appendix E

STOCHASTIC AUTOMATA LEARNING ALGORITHM

Recently, Fu and McLaren (ref. El) have investigated a learning system
the synthesis of which is based upon observed interactions between the learn-
ing system and its stochastic environment. The similarities between the
Fu-McLaren system and the system presented in this document, as well as
in the philosophies of solution are revealed in the following pertinent quotes:

"The learning systemwill perform its operations iteratively, during succes-
sive intervals (or steps) of time. During a given step in time, the output
of the learning system is a particular action or set of parameter values
resulting from a decision by the learning system. The action or output
takes place in the environment. As a result, the environment reacts to

this ac.t;oa hi a _=,_i,, way, observable to the Learning system. Having
observed this, thesystemevaluates the reaction as to desirability. Based
upon this evaluation, the learning system will change its structure or
parameters in selecting its action for the next step. The change should
be such that the 'average' desirability (or performance) increases (or
improves). As structural or parametric changes are repeated step by
step, the learning system seeks (or converges toward) the action that
would yield the best performance. This step by step process is consid-
ered as a learning process--steady improvement of performance based
upon past experience. The system learns as it operates in its environ-
ment; there is no separation of the operation into training and working
phases. The system learns from environmental reaction to its own
actions. The environment is assumed, of course, to be random; its

statistical properties are, in general, unknown to the designer except,
perhaps, for the assumption of stationarity. In order that the learn-
ing system be able to evaluate its reactions from the environment,
the value of each 'useful' (as a measure of performance)reaction

must be specified. Such specifications are bound-up with the purpose
or goal of the learning system."

The notational correspondence between the problem in this document and
Purdue's is summarized in fig. E-I. [The block diagram in {a) is adapted from
fig. 1 of r ef. El.! It is assumed in this section that P--I (k, I ; m) is not gi_ren by

eq. (58); PI (k, I; m) is, for the present, an unknown measure of the_system's

performance [att= (k+l) T, k= 0, 1.... ]. In Item 9Din fig. E-IPl(k, 1;m)
is normalized in order to ensure that

0 _ PI (k, 1; m) __ 1 (El)
CT
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for all k-0. This normalization is required in order to apply stochastic
automata theory to the synthesis of the self-organizing controller.

Stochastic Automata Approach

Assume that the jth control situation has been established and that the

nominal feedback parameter vector, P{, has been associated with it. A set

of r uniformly distributed feedback v_'ctors, which includes P_ as an
element I , is then constructed. The construction of this set, w_ich is

centered about___P_ in a hypersphere of radius s, and which is denoted

i = 1 1

where

Pi a Pi
-r = --h , (E2)

is discussed shortly.

Probabilities Pl' P2'. .... and Pr are assigned to each one of the r
possible f_edback parameter vectors in eq. (E2). These probabilities are
updated every T units of time according to the following rule:

If

then

p*l (k; t) : P._
--A --J

pj (k + 1) = epj (k) + (1 - e) [1 - z (k, l; m)l (E3a)

Pi (k + 1) = OPi (k) + (1 -e) z (k, l; m) i_j = 1, ..,r (E3b)• (r - 1) "

for k = 0, 1 ..... k _f_. In eqs. (E3a) and (E3b)
m

tin general, P_A need not be included a priori in this set. If it is not included,
then eq. (E2) does not hold; that is to sa,T Pi is chosen in the same way as2, wr
the other r-1 feedback vectors.

_The notation, Pi (k+l) for the probability that P_ (k+l; t) = PiJ[does not

reflect the conditioning tOP_Al (k; t). This notation is used for convenience.
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and

0 < e < 1 (E4)

Z (k, l;m) _ PI (k, l;m) (E5)
CT

In general, Z(k,l;m) is either a discrete-parameter (k) continuous-valued

random process or a discrete-parameter discrete-valued process; hence, the

probabilities in eqs. (E3a) and (E3b) are discrete-parameter continuous-

valued random processes (random sequences).

Updating the probabilities according to eqs. (E3a) and (E3b) is shown by

Fu and McLaren to lead to a control choice which minimizes the expected

value of Z(k, 1; m), where (ref. El).

r

E IZ (k, 1; m) I = I E IZ (k,I; m) I..PA _ {k;t) = PflE IPi(k)] (E6)

i=l

Eq. (E6) is written for convenience as

r

EIZ'k' m'l -- 7
i=l

m i (k)E Ip i (k)l (ET)

where

Fu and McLaren prove that in the stationary case, that is, the case when

m. (k) = m. for all k (i = 1 ..... r) (E9)
1 1

monotonically, where

/j_ mq)

r r

_'. = II (I mj) 11 1 (I - (EIO)
i j=l - L--j_i = 1
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and

EIz'k+1.'_m'l<EIZ'k.'.m,I,,ioitek__O.
and

r

Limk_oEIz ,k,,.,m,I :_ mj_j ,E,1,
j=l

which means that E {Z (k, 1; m)} converges in a monotonic decreasing
manner toward its minimum limit value.

They also demonstrate that eqs. (El0) and (Ell)hold, if

I I _1 -,

I z _k, ,; m) J --PA (k; t) = P___ J = m i (k) i = I ..... r (Elga)

Lim m. (k)_mi, monotonically, (ElZb)
k--_ I

_/. (k)-*T. monotonically so that
1 1 (ElZc)

1 >1 "Yi _ ?i 'Yi > -- =>_/i (k) < @ (k)-. -- all k (ElZd)_r -r ' r'

Hence, monotonic convergence is guaranteed even in certain nonstation-
ary cases.

It is important to note that, in general, the values for the conditional

expected values m. Ira. (k) J are not available to the designer If
Z(k, l;m) " 1 : 1 Jts anergodlc random process, then the expected value of Z(k, _; m)

is approximated by the average

k

E Z (k, 1; m) - (k + 1) PI (8, 1; m) /CT (El3)

fl=o

which provides a convenient way of evaluating the expected value on-line.

Observe, also, from eq. (El3) and Item I0D in fig;N-l, that for an ergodic
process

E [ m (k, 1; m)]= PI (k, 1; m) (El4)

hence, for an ergodic process, the Douglas and Purdue indexes of perform-
ance are the same.
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One final observation is in order. Suppose that instead of minimizing

E {Z (k, l; m) }, it is desired to minimize the expected value of the discrete

time average of Z (k, l; m); i.e., to minimize

1

E (k + 1) Z (_, 1; m)

fl=o

It is straightforward to show that a sufficient, although not necessary,

condition for minimizing this quantity is eq. (E3); hence, for an ergodic

process, the solution to the problem of minimizing E [ Z. (k, 1; m)] is also

a solution to the problem of minimizing E [ PI (k, 1; m)[ .

In the next section, it is assumed that either mi (k) = m i (for all k _> 0)

or the conditions in eq. (El2) are satisfied. Further discussions on this

important point appear in the section on Convergence of Algorithm.

Description of On-Line Learning Algorithm

An on-line learning algorithm that is based on the preceding optimization

technique is summarized in fig. E-2. It is assumed here that the overall goal

is to minimize E { Z (k, 1; m)} . [ It is not contended here that minimizing

E [Z (k, 1; m)] is sufficient for reducing attitude errors to within ±0. P arc-

sec] and that in each control situation on-line learning terminates as this

goal is achieved; hence, it is possible to reach a state of complete learning.

By definition, complete learning refers to the condition when the optimiza-

tion problem has been satisfactorily solved for every existing control
situation.

The control situation portion of the algorithm in fig. E-2 has been

discussed in connection with the error-correction algorithm and, therefore,

will not be elaborated upon here. After anew control situation is established,

a set of r uniformly distributed vectors [pC [ _ is constructed. Before

proceeding further, consider the constru'cfior/ of this set.

Construction of Uniformly Distributed Feedback Parameter Vectors.--

A set of vectors [pC }_ must be constructed thai are uniformly distributed
in a hypersphere _ radius s that is centered about.P_A c , the nominal control
associated with the c tr_ control situation. It is assum'_d that

pC c
--r = _P/_ (El5)

which means that only r-1 vectors are needed. Let

pc c= _p + 6. i = 1 .....
-- 1 A --1

r- 1 (El6)
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where the components of 6_i [ 6 i = (6:1, 6i_, 6.o)T]are uniformly distributed

(fig. E-3). It follows from theconstru_tion_statt_ment above, that

l-PiC _ PC_A II -< s i = I..... r - 1 (EFT)

hence,

52i2 52 ZZ < s i = i, . r - I (El8)
6 il + + i3 - "" '

Eq. (El8) must be satisifed for all values of 6ij; hence, it must be

satisfied for the worst possible case, when 5ij = _, j = 1, Z, 3. In this

case, eq. (El8) becomes

A _< V_- (El9)

One concludes, therefore, that choosing

s (EZO)

is sufficient to satisfy eq. (El8) for all values of 6;;.

-ix

f(Sij)

1

2L_

A

Figure E-3. Uniformly Distributed _ ij's (j = 1, 2, 3, )
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Continuation of Description of Learning Algorithm in Fig. E-2.--After
constructing{P_f, probabilities Pl(k) ..... and Pr(k) are associated with
the respective-feedback vectors. Initially, [fig. E-2-]

1
pl(O) = _z(o) ..... Pr(O) = ¥ (EZl)

In this way, the initial control choice is unbiased; this control choice, which
• • C

Is deslgnated _Pj, may be thought of is being obtained by tossing an r-sided
coin, where each side is associated with one control choice and is equally
probable.

Z(o, c; m) is computed from eq. (E5); C must be specified or determined
ahead of time. Next, E_Z(o, c; m)_ is computed and compared with the
threshold, 6. If Z(k, c; m) is erg0dic E {Z(o, c; m)} can be computed from
eq. (El3). Now, if E{Z(o, c; m)}<5 the on-line optimizations are termi-
nated in the c th control situation. If, on the other hand, E { Z(o, c;m) 28

then the probabilities Pl(0) ..... and Pr(0) are updated to Pl(1) .... _ and
pr(1) using eqs. (E3a) and (E3b).

Next, a decision is made as to which control is to be applied for T<t<2T.

In the present algorithm, the control choice is obtained by choosing the feed-
back vector having the largest probability associated with, it;hence, this

means, that for some k_>K,

max Pi(k) = pj(k) _=_ p*c (k;t) = pC. (E22)
i=l ..... r --A --J

The meaning of "for some k_>K" will become clear shortly.

If pj(1)>Pi(1), all i.'_j= I, .... r then the same control is applied tothe system for T<t<ZT.. , on the other hand, the most probable control is

no longer _Pf then either of the following possibilities may occur:

I. Pi(k+l)>pj(k+l) for one value of i _ j = I, .... r.

2. Pi(k+l)>pj(k+l) for some values of i _ j --1..... r.

3. Pi(k+l)>pj(k+l) for all values of i # j = I, .... r.

An example that illustrates the three cases is summarized in table E-I.
In the first case above, Q = l, whereas in the second and third cases, Q>l

and Q = r - I, respectively (fig. E-2). In the latter cases one element is

chosen by assuming Pil, Pi2 ..... and PiQ are uniformly distributed (which

they are). This element, which is denoted pj(1) may be thought of as being
obtained by tossing a Q-sided coin, where each side is associated with an

element of {pio}Ql' . For the example in table E-I, K = 3; that is to say,
K is the first v_1_e of k for which Case 1 above holds.
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Returning to fig. E-Z, the control PA*(I) = pC is chosen and applied to the

system for T< t< 2T, after which Z(I,-_; m) isJcomputed, and the entire pro-

cedure repeats.

A
The sampling of_PAa (tit) occurs every 3T units of time; thUs, at least

three decisions are made for each entry into a control situation.

Discussions

Implications of Eq. (EZ2).--Here the implications of eq. (EZZ) are

investigated in greater detail in order to gain a better understanding of the

Stochastic Automata Learning Algorithm. Suppose. _for example, that for

k_>.K p/_l (k;t) = Pl I. Under what conditions is p_l (k + 1; t) also equal to
P:_ ? -Th_ _ns,x, er;te th!__ quest!on i-_ _u:_n.arizcd in the fulluwh, M £h_urem,

thJe proof of which is given below.

Theorem:

If__P;l(k;t) = ..pill and Z(k, 1; m)< r-___J_lr' then__p;l(k + 1", t) = Pj I

Proof:

_;1. (k;t) = pjl

1_J = I, . ..,

means, from eq. (EZZ), that gi(k)>Pi(k) for all

r. From eqs. (E3a) and E3b) ft follows, therefore, that

pj (k + 1)>pi (k + f)+ (1-8) [1 -(rr--_l)Z (k, 1; m)1"

r-1

Now since.Z(k, 1; m)<--y-:, I j (k + 1) > Pi (k + 1) for all i _ j = 1, ...

hence, _p/_l[ (k + 1; t) = _pjl.

An application of this theorem appears in table E-Ifor k = 5. There
r I _c ,e

Z(4, c; n_) = O. 10 which is less than _-_ = O. 75; hence, _P_ (5;t) = _P_

(4; t) : _P%. Observe, also, it does not follow if Z(k, I ;'_n)>-V-_ th_

Pi (k * l) > pj (k + l) for some i _ j = 1 ..... r. This is demonstrated in
table ,.-I for k = 6.

(EZ3)

r;

This theorem illustrates a disadvantage to selecting the control choice

on the basis of eq. (E2Z). As long as Z(k, 1; m)<_-[a new control choice will

not be made; hence, the performance may be deteriorating rapidly, that is

Z(k, i; m)--*-F-_ 1-, with no change in control possible. This situation is not

very desirable; hence, an alternate procedure for choosing_P_A .1 (k + 1; t) is
desired.

One such alternate approach might be to associate the probabilities

Pl(k) ..... and Pr(k) with an r-sided coin. In this case, the sides are biased

by the probabilities; hence, the control choices are not equally-likely. In

addition, the control choice having the highest probability will not always be

chosen. Convergence to such a control choice is in probability, which means
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that for some k > K 1 only a small percentage of control choices other than
the one having the highest probability will be made.

Convergence of Algorithm.--Unless eq. (Eg) or the conditions in
eq. (El2) hold, convergence in any sense is not guaranteed when the linear
model in eq. (E3) is used as the basis for the stochastic automaton. This

poses a major obstacle for the use of this model in our problem, since the

system in this document is time-varying and, therefore, is nonstationary.
At present, no convenient choice for Z (k, _; m) in eq. (E5) has been found;
hence, the stochastic automata algorithm is not applicable to the problem
in this document although it does provide an interesting approach.
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Appendix F

ADAPTIVE, RANDOM-OPTIMIZATION

LEARNING ALGORITHM

Introduction

Here the discussion begin_with the expression for the on-line-optimal
feedback parameter vector, _PA _ (k+l;t), and indicates heuristic techniques

for choosing n(k+l) randomly. Of primary interest is a so-called adaptive,

random-optimization technique; however, a brief discussion of simple,

random-optimization is in order first. Discussions on simple random-

optimization are found in Idelsohn (ref. F1), Brooks (refs. FZ and F3) and

Matyas (ref. F4); discussions on adaptive, random-optimization, in the

context of a stationary hill-climbing problem, are found in Matyas (ref. F4);

discussions in which random and gradient optimization techniques are com-

pared, and which point out the superiority of the random technique in many

circumstances, are found in Rastrigin (ref. F5) and Gurin and Rastrigin

(ref. F6).

Simple Random Optimization

Simple random optimization of the sub-goal (Pl(k, i ;m) involves a

sequence of trials forz, where _n is now a 3 x 1 random vector with zero
mean and unit correlation matrix. The kth realization of n_ is denoted _(k)

For the purposes of a simple, random-optimization learning algorithm,

eq. (81) is rewritten here as

PAl(k+ 1 ) __P'A'C(k-1) + y(k) Tr(k) + w (k+l)

k=O, 1 .....
(F1)

where

"I
w (0) _ ___PlA = __PA (0) (FZa)

P___l(- 1) =_ O (FZb)
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and y(k) is the decision function that is defined in eq. (83), with

y(O) _ 1. (F3)

The effect of the decision function is to remove unsuccessful choices for 7r

from succeeding iterations of P_.

A brief description of a heuristic learning algorithm that is based upon
a simple, random-optimization procedure follows. The convergence of this
algorithm is proved in Matyas (ref. F4) for a stationary, calculus, hill-
climbing problem. Questions related to the convergence of the algorithm
(and also to the adaptive, random-optimization algorithm discussed in the
next paragraph), as applied to our problem, a dynamic optimization problem,
have not been answered, since they were not within the scope of the present
study.

Observe, from eq. (FZ), that the nominal control P_ serves as a starting

point for the on-line optimizations. PAris applied initi'_-f#y for 0<t<T and
PI(o,l;m) is then computed. A valueot__ is chosen and the control

__PAl(l;t) = pA_+ ! (I) (F4)

is applied to the system for T<t<ZT. PI(1,_;m) is then computed and com-
pared with PI(o, l;m).

If PI(1,2;m) -< PI(o,_;m) -e'(1) then y(1) is unity, which means that the
choice for _, Tr(1) is satisfactory; hence, _(1) is retained. A value for _r is
chosen and the control

_pA_(Z;t) _- p_ + =(I) + _(Z) (F5)

is applied to the system for ZT<t<3T.

If on the other hand, PI(1,{;m) >PI(o,I;m) -_'(1), y(1) is set equal to
zero, which means that the choice for _r, _r(1), is unsatisfactory. A new
value is chosen for 7r, and the control

(F6)

is applied to the system for ZT<t<3T. This procedure is repeated until
PI(k,t;m) <_6(_).
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In general, the probability of a successful step using simple, random
optimization is 1/2. Matyas (ref. F4} has demonstrated, however, that the
convergence can be speeded up by incorporating learning and memory into
the above procedure. A modified version of his technique is discussed next.

Adaptive, Random-Optimization

Adaptive, random optimization of PI(k,f;m) involves a sequence of trials

for __(k+l), where_(k+l) is now a discrete stochastic process which has a
variable mean value and a variable correlation matrix. These variables

are adjusted in a learning process that is based upon past successes and
failures. The effect of this is to increase the probability of a successful
trial; this is achieved by learning the most favorable direction and step size
for an iteration of the feedback parameter vector.

,--(k+i) is now given by the expression

__(0) = __PlA (F7)

__(k+i)= d(k+l)+ W(k+1)E k=O, I.... (FS)

where

is a {3 x 1) random vector with zero mean and unit correlation
matrix, T{k+l} is a transformation matrix whose elements can be
selected so as to control the standard deviation of the vector

T(k+ 1) bt,

and

d(k+ 1) is a mean value vector given by the expression

d_(1) = 0 (F9)

d(k+l) = C (y(k)) d(k)+ C 1 (y(k))_ (1)(k) (F10)-- O

where

CO and C1 are functions of the decision function defined in eq. (83) and
in the sequel are assumed given by the relations

(y) 1 1C o (k) = _+_y(k) (Flla)
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and

() 1C1 y(k) = _y(k). (F1 lb)

The general conditions which C O and C 1 should satisfy are found in
Matyas (ref. F4). Choosing d(1) =2 tends to leave _r(1) unbiased. The
realization of__(k) in eq. (FI_, _(l_(k), follows from eq. (FS). The final
expression for d(k+l) is

1y{k)] d{k) + ly(k) T{k} bt{k)

k=l, Z..... (FlZ)

Before proceeding to a discussion of an adaptive, random-optimization
learning algorithm, the implications of choosing C O and C 1 as in eqs. (Flla)
and (Fllb), respectively, are discussed. Two cases are distinguished:
(1)y{k)=0--poor choice for __(k), and (2) y{k)=l--acceptable choice for _(k).

1
When y(k) = 0 C O =_ and C 1 = 0 and d{k+l) becomes

1 d(k)d(k+l) = _ (F13)

In this case, the mean value of _r(k+l), d(k+l), can be viewed as being

in a direction oppo3ite to the precedi-ng mean value d{k), hence, C O is called
the rejection coefficient.

1
Wheny{k) = 1 C O = 1 and C 1 = _ andd(k+l) becomes

1 e(k)d(k+l) = _d(k) + _ T(k) (F14)

In this case, the mean value of _(k+l) is chosen in the same direction
as the preceding mean value. Observe that for an unsuccessful step C 1 = 0
and for a successful step CI>0; hence, C 1 is called the detection coefficient.

A Learning Algorithm

An on-line learning algorithm is summarized in fig. F-1. Included on
the figure is a control situation algorithm, one which has been discussed in
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connection with the Error-Corr,_ction Learning Algorithm in Section 4, of

Part 2. A brief description of the flow diagram follows.

The system is allowed to run for T units of time under the action of PX"

__P_ is the nominal control for a new control situation and is the stored value

of _!_Xc associated with the last entry into an existing control situation. The

on-line performance index is evaluated for 0<t<T. Rather than let the system

continue under the same control for T<t<ZT, as in the Error-Correction
g-'c

Learning Algorithm, ---PA is updated by __(1), for T<t<2T.

The value of rill is computed from eq. (F81 by choosin.g Sis(ill .and

¥ "I

specifying_d(1), ftis assumed in the sequel that T(k+l) is the laentity

matrix (3 x 3) [time did not permit the investigation of an algorithm which

updates T(k+l)]. If the cth control situation is entered for the first time

d(1) is set equal to zero [see eq. (F9)]. If, on the other hand, the c th control

_,,_,,,_ _: _,_ ..... entered, d{!) is set equal to the last value cf d that is

stor-ed-in a me-mory compartment associated with the c TM control sTtuation;

hence, eq. (F9) should read d(1) = O when m = 1.

The on-line performance index is computed for 0<t<ZT and is then

compared with the performance for 0<t<T. If the performance for 0<t<2T is

better than that for 0<t<T, ,y(1) is set equal to unity, d(2) is computed from

eq. (F12), __ is chosen [E(2)] , and Z(Z) is computed fro--m eq. (F8). Finally,

if the performance for 0<t<ZTis worse than that for 0<t<T, y(1) is set equal

to zero, d(Z) is computed, E is chosen [__(Z)], and _r(Z) is computed.

:#c
In both of these cases, once ,r(Z) has been computed, the new P^ , whxch

• • _',."C • -- • . --r_L
is deslgnated PA (km)' is stored. The on-hne performance Index is then
evaluated for 0--_t<3T. PI(2, c;m) is compared with PI(1, c;m) and the entire

procedure repeats.

Here, as in the Error-Correction Learning Algorithm, the estimates of

the plant parameters are sampled every 3T units of time.

In conclusion, the following observations are noted: it is possible to

distinguish two levels of learning in the proposed on-line-learning controller.

The first level is associated with learning the on-line-optimal feedback

parameter vectors P_ (t) for each control sltuatmn (_= l, Z .... ). The
second level, which_s lower in the hierarchy, is associated with learning

optimum step sizes and directions for each control situation. The second

level of learning represents, in effect, an attempt to learn how to learn

p_.e (t).
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